Question

In: Physics

An electron follows a helical path in a uniform magnetic field of magnitude 0.447 T. The...

An electron follows a helical path in a uniform magnetic field of magnitude 0.447 T. The pitch of the path is 4.88 μm, and the magnitude of the magnetic force on the electron is 1.64 × 10-15N. What is the electron's speed?

ASAP

Solutions

Expert Solution

w is the angular velocity, T is the time period of the helical path, q is the charge, m is the mass of the charge particle.  Because the magnetic force FB supplies the centripetal force Fc, we have

The parallel motion determines the pitch p of the helix, which is the distance between adjacent turns. This distance equals the parallel component of the velocity times the period:

Adding (1) and (2), you can obtain

Here, Fb = 1.64 x 10-15 N, q = 1.6 x 10-19 C, m = 9.1 x 10-31 Kg, B = 0.447 T, p = pitch = 4.88 x 10-6 m. Putting all the values, you can obtain


Related Solutions

An electron moves in a circular path perpendicular to a uniform magnetic field with a magnitude...
An electron moves in a circular path perpendicular to a uniform magnetic field with a magnitude of 2.14 mT. If the speed of the electron is 1.48 107 m/s, determine the following. (a) the radius of the circular path ............ cm (b) the time interval required to complete one revolution ............ s
A magnetic field has a magnitude of 0.038 T and is uniform over a circular surface...
A magnetic field has a magnitude of 0.038 T and is uniform over a circular surface whose radius is 24 cm. The field is oriented at an angle of 42° with respect to the normal to the surface. What is the magnetic flux through the surface?
3. A uniform magnetic field of magnitude B = 0.400 T is directed along the positive...
3. A uniform magnetic field of magnitude B = 0.400 T is directed along the positive x axis (see figure). A positron (anti–electron) moving at a speed of v = 3.00 × 103 m·s-1 enters the magnetic field along a direction that makes an angle of 37.0o with the x axis. The mass of the charge is m = 9.1×10-31 kg. a) Write the Lorentz force (in vector form) for the general case and the actual case shown in the...
A magnetic field has a magnitude of 1.2e-3 T, and an electric field has a magnitude...
A magnetic field has a magnitude of 1.2e-3 T, and an electric field has a magnitude of 5.1e3 N/C. Both fields point in the same direction. A positive -1.8 microC moves at a speed of 3.5e6 m/s in a direction that is perpendicular to both fields. Determine the magnitude of the net force that acts on the charge.
A) An electron and proton enter a region of uniform magnetic field, compare the magnitudes of...
A) An electron and proton enter a region of uniform magnetic field, compare the magnitudes of the forces and accelerations each experience. Explain. Additionaly compare the directions of the forces if the proton and electron are moving in the same direction. (b) • How would you orient a square current loop in a uniform magnetic field so that there is no torque on the loop? • How would the orientation change to maximize the torque on the loop? • In...
A proton and an electron traveling at the same speed enter a uniform magnetic field. The...
A proton and an electron traveling at the same speed enter a uniform magnetic field. The velocity vector of each particle is perpendicular to the magnetic field. Which of the following statements best describes their motions? The paths of both particles will curve in the same direction, but the radius of the electron's trajectory will be much larger than the radius of the proton's trajectory. The paths of both particles will curve in same direction, but the radius of the...
An electron is moving through a magnetic field whose magnitude is 8.70x 10^-4T. The electron experiences...
An electron is moving through a magnetic field whose magnitude is 8.70x 10^-4T. The electron experiences only a magnetic force and has an acceleration of magnitude 3.50 x 10^14m/s^2. At a certain instant, it has a speed of 6.80 X 10^6 m/s^2. Determine the angle (less than 90 degrees) between the electrons velocity and the magnetic field.
A uniform magnetic field points upward, parallel to the page, and has a magnitude of 7.85...
A uniform magnetic field points upward, parallel to the page, and has a magnitude of 7.85 mT. A negatively charged particle (q = -3.32 µC, m = 2.05 pg) moves through this field with a speed of 67.3 km/s at a 42° with respect to the magnetic field, parallel to the page as shown. What is the magnitude of the magnetic force on this particle? 1.75 mN 1.30 mN 1.61 mN 1.17 mN
A positron with kinetic energy 2.40 keV is projected into a uniform magnetic field of magnitude...
A positron with kinetic energy 2.40 keV is projected into a uniform magnetic field of magnitude 0.110 T, with its velocity vector making an angle of 80.0° with the field. Find (a) the period, (b) the pitch p, and (c) the radius r of its helical path answer with units please
A positron with kinetic energy 2.00 keV is projected into a uniform magnetic field of magnitude...
A positron with kinetic energy 2.00 keV is projected into a uniform magnetic field of magnitude 0.140 T, with its velocity vector making an angle of 83.0° with the field. Find (a) the period, (b) the pitch p, and (c) the radius r of its helical path.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT