Question

In: Physics

An electron is moving through a magnetic field whose magnitude is 8.70x 10^-4T. The electron experiences...

An electron is moving through a magnetic field whose magnitude is 8.70x 10^-4T. The electron experiences only a magnetic force and has an acceleration of magnitude 3.50 x 10^14m/s^2. At a certain instant, it has a speed of 6.80 X 10^6 m/s^2. Determine the angle (less than 90 degrees) between the electrons velocity and the magnetic field.

Solutions

Expert Solution

Magnetic field= 8.70 X 10-4 T=B

The electron experiences only a magnetic force and has an acceleration of magnitude

       = 3.50 * 1014 m/s 2.

At a certain instant, it has a speed = 6.80 * 10 6 m/s.

We have to determine the angle less than right angle between electron velocity and magnetic field which can be given as--

    F = q*v*B Sin θ

sin θ = F / q*v*B

    θ =sin -1 (F / q*v*B   )

         θ = sin -1 ( m*a / q*v*B   )   -------------(1) (Since F=m*a)

m is mass of the electron =9.11*10-31 Kg

The acceleration of electron is given in the question as--

a = 3.50 X 1014 m/s 2

q is charge of the electron = 1.60*10-19 C

Speed of electron = v = 6.80 *10 6 m/s

B is the magnetic field = 8.70 X 10-4 T.

Substituting the values in equation (1) we get-

θ =sin -1 (3.5 * (10^14)*9.1*10^(-31)/(1.6*10^(-19))*(6.8*10^6)*(8.7*10^-4))

θ=sin -1 (0.336)

θ=19.633 degrees. (Since we need angle less than the right angle)


Related Solutions

An electron moving in the positive y direction at right angles to a magnetic field, experiences a magnetic force in the negative x direction.
An electron moving in the positive y direction at right angles to a magnetic field, experiences a magnetic force in the negative x direction. what is the direction of the magnetic field?a) it is in the negative z directionb) it is in the postive y directionc)it is in the positive z directiond) it is in the negative x directione) it is in the postive x direction
An electron moves in a circular path perpendicular to a uniform magnetic field with a magnitude...
An electron moves in a circular path perpendicular to a uniform magnetic field with a magnitude of 2.14 mT. If the speed of the electron is 1.48 107 m/s, determine the following. (a) the radius of the circular path ............ cm (b) the time interval required to complete one revolution ............ s
A charged particle moving through a magnetic field at right angles to the field with a...
A charged particle moving through a magnetic field at right angles to the field with a speed of 35.1 m/s experiences a magnetic force of 7.56x10-4 N. Determine the magnetic force on an identical particle when it travels through the same magnetic field with a speed of 8.7 m/s at an angle of 44° relative to the magnetic field. Express your answer in microNewtons.
An electron is moving north; what direction should a magnetic field be oriented, so the magnetic...
An electron is moving north; what direction should a magnetic field be oriented, so the magnetic force on the electron just balances the gravitational force? A square loop is in the x-y plane, with its top and bottom parallel with the x-axis, and its sides parallel with the y-axis. It carries a clockwise current when viewed from the positive z-axis.    There is a constant magnetic field pointed in the x-axis direction.  What are then directions of the magnetic forces on the four...
The circuit in the figure below is located in a magnetic field whose magnitude varies with...
The circuit in the figure below is located in a magnetic field whose magnitude varies with time according to the expression B = 1.00  10-3t, where B is in teslas and t is in seconds. Assume the resistance per length of the wire is 0.107 Ω/m. Find the current in section PQ of length a = 64.0 cm. magnitude µA direction ---Select--- from Q to P from P to Q The magnitude is zero. A rectangular loop of wire in the...
An electron follows a helical path in a uniform magnetic field of magnitude 0.447 T. The...
An electron follows a helical path in a uniform magnetic field of magnitude 0.447 T. The pitch of the path is 4.88 μm, and the magnitude of the magnetic force on the electron is 1.64 × 10-15N. What is the electron's speed? ASAP
If the magnitude of the magnetic field is B what must the magnitude of this field...
If the magnitude of the magnetic field is B what must the magnitude of this field be to cancel out the gravitational force on the wire?
A magnetic field with induction B = 15 · 10−4T is directed perpendicular to the electric...
A magnetic field with induction B = 15 · 10−4T is directed perpendicular to the electric field with intensity E = 10V /cm. The beam of electrons flying at the speed v enters the space with the mentioned fields. The velocity of the electrons is perpendicular to the plane containing the vectors E and B. Calculate: 1) the electron velocity v, if the electron beam does not deviate under the simultaneous action of both fields; 2) the radius of curvature...
Magnitude and direction of the magnetic field
A proton moves perpendicular to a uniform magnetic field B at a speed of 1.30 x 10^7 m/s and experiences an acceleration of 2.40 x 10^13 m/s^2 in the positive x direction when its velocity is in the positive z direction.  Determine the magnitude and direction of the field?
An electron in a TV camera tube is moving at 7.20×106 m/s in a magnetic field...
An electron in a TV camera tube is moving at 7.20×106 m/s in a magnetic field of strength 59 mT. Without knowing the direction of the field, what can you say about the greatest and least magnitude of the force acting on the electron due to the field? Maximum force? Minimum force? At one point the acceleration of the electron is 6.327×1016 m/s2. What is the angle between the electron velocity and the magnetic field? (deg)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT