In: Accounting
Your company has the sales for year 1 below. You want to select
from one of three models for forecasting: a three-month moving
average, a weighted moving average (you believe that the weights
should be 0.2, 0.3, and 0.5), and an exponential smoothing average
in which you use an alpha of 0.2 and an assumed forecast for
January of year one of $35,000. Determine sales forecast for
January year 2 and calculate MAD.
Jan Yr 1 34284
Feb 34000
Mar 31017
Apr 33406
May 34518
Jun 35469
Jul 35360
Aug 34894
Sep 34547
Oct 31015
Nov 31167
Dec 32925
A) Three-month moving average:
Sales forecast: $
MAD:
B) Weighted moving average:
Sales forecast: $
MAD:
C) Exponential moving average:
Sales forecast: $
MAD:
Which forecasting method should you use for your company? (enter A,
B, C):
Year1 (Months) |
Sales |
3-month Moving Average |
3-month Weighted Moving Average (weights: 0.2, 0.3, 0.5) |
Exponential Smoothing (alpha = 0.2) |
Jan |
34284 |
|||
Feb |
34000 |
(0.2*34280)+(0.8*34280)= 34280 |
||
Mar |
31017 |
(0.2*34000)+(0.8*34280)= 34224 |
||
Apr |
33406 |
(34284+34000+31017)/3= 33100 |
(0.2*34284)+(0.3*34000)+(0.5*31017)= 32562 |
(0.2*31017)+(0.8*34224)= 33582 |
May |
34518 |
(34000+31017+33406)/3= 32808 |
(0.2*34000)+(0.3*31017)+(0.5*33406)= 32808 |
(0.2*33406)+(0.8*33582)= 33547 |
Jun |
35469 |
(31017+33406+34518)/3= 32980 |
(0.2*31017)+(0.3*33406)+(0.5*34518)= 33484 |
(0.2*34518)+(0.8*33547)= 33742 |
Jul |
35360 |
(33406+34518+35469)/3= 34464 |
(0.2*33406)+(0.3*34518)+(0.5*35469)= 34771 |
(0.2*35469)+(0.8*33742)= 34088 |
Aug |
34894 |
(34518+35469+35360)/3= 35116 |
(0.2*34518)+(0.3*35469)+(0.5*35360)= 35225 |
(0.2*35360)+(0.8*34088)= 34342 |
Sept |
34547 |
(35469+35360+34894)/3= 35241 |
(0.2*35469)+(0.3*35360)+(0.5*34894)= 35149 |
(0.2*34894)+(0.8*34342)= 34453 |
Oct |
31015 |
(35360+34894+34547)/3= 34934 |
(0.2*35360)+(0.3*34894)+(0.5*34547)= 30263 |
(0.2*34547)+(0.8*34453)= 34471 |
Nov |
31167 |
(34894+34547+31015)/3= 33485 |
(0.2*34894)+(0.3*34547)+(0.5*31015)= 32851 |
(0.2*31015)+(0.8*34471)= 33780 |
Dec |
32925 |
(34547+31015+31167)/3= 32243 |
(0.2*34547)+(0.3*31015)+(0.5*31167)= 31796 |
(0.2*31167)+(0.8*33780)= 33257 |
Year 2 (Month) |
||||
Jan |
(31015+31167+32925)/3= 31702 |
(0.2*31015)+(0.3*31167)+(0.5*32925)= 32015 |
(0.2*32925)+(0.8*33257)= 33191 |
Calculation of Mean Absolute Deviation (MAD)
Sales |
3-month Moving Average |
Deviation |
Absolute deviation |
33406 |
33100 |
33406 – 33100 = 306 |
306 |
34518 |
32808 |
34518 – 32808= 1710 |
1710 |
35469 |
32980 |
35469 – 32980 = 2489 |
2489 |
35360 |
34464 |
35360 – 34464 = 896 |
896 |
34894 |
35116 |
34894 – 35116 = -222 |
222 |
34547 |
35241 |
34547 – 35241 = -694 |
694 |
31015 |
34934 |
31015 – 34934 = -3919 |
3919 |
31167 |
33485 |
31167 – 33485 = -2318 |
2318 |
32925 |
32243 |
32925 – 32243 = 682 |
682 |
Sum of absolute deviation = 306 + 1710 + 2489 + 896 + 222 + 694 + 3919 + 2318 + 682 = 13236
MAD = 13236/9 = 1470.66
Sales |
3-month Weighted Moving Average |
Deviation |
Absolute Deviation |
33406 |
32562 |
33406 – 32562 = 844 |
844 |
34518 |
32808 |
34518 – 32808 = 1710 |
1710 |
35469 |
33484 |
35469 – 33484 = 1985 |
1985 |
35360 |
34771 |
35360 – 34771 = 589 |
589 |
34894 |
35225 |
34894 – 35225 = -331 |
331 |
34547 |
35149 |
34547 – 35149 = -602 |
602 |
31015 |
30263 |
31015 - 30263 = 752 |
752 |
31167 |
32851 |
31167 – 32851 = -1684 |
1684 |
32925 |
31796 |
32925 – 31796 = 1129 |
1129 |
Sum of absolute deviation = 844 + 1710 + 1985 + 589 + 331 + 602 + 752 + 1684 + 1129 = 9626
MAD = 9626/9 = 1069.55
Sales |
Exponential Smoothing |
Deviation |
Absolute Deviation |
33406 |
33582 |
33406 – 33582 = -176 |
176 |
34518 |
33547 |
34518 – 33547 = 971 |
971 |
35469 |
33742 |
35469 – 33742 = 1727 |
1727 |
35360 |
34088 |
35360 – 34088 = 1272 |
1272 |
34894 |
34342 |
34894 – 34342 = 552 |
552 |
34547 |
34453 |
34547 – 34453 = 94 |
94 |
31015 |
34471 |
31015 – 34471 = -3456 |
3456 |
31167 |
33780 |
31167 – 33780 = -2613 |
2613 |
32925 |
33257 |
32925 – 33257 = -332 |
332 |
Sum of Absolute Deviation = 176 + 971 + 1727 + 1272 + 552 + 94 + 3456 + 2613 + 332 = 11193
MAD = 11193/9 = 1243.66
Therefore,
Requirement A:
3- month Moving Average
Sales forecast = $31702
MAD = 1470.66
Requirement B:
Weighted Moving Average
Sales forecast = $32015
MAD = 1069.55
Requirement C:
Exponential Moving average
Sales forecast = $33191
MAD = 1243.66
Hence, B- weighted moving average has the lowest MAD and is considered to be the best forecast method among the three.