Question

In: Physics

A constant force acts on a 600kg mass for 68s. The velocity of the mass is...

A constant force acts on a 600kg mass for 68s. The velocity of the mass is 10m/s before the force is applied. Its final velocity is 44m/s. What change in momentum does the force produce?

Solutions

Expert Solution

This is the answer. But I still want to mention some extra comments towards this problem so that the whole question becomes clear to the question provider.


Related Solutions

In order for an object of constant mass to be traveling with constant velocity, which of...
In order for an object of constant mass to be traveling with constant velocity, which of the following must be true? a. the net force acting on the mass must be zero b. it’s acceleration is constant c. the net force acting on the mass is greater than zero d. none of the above
A net force of 64 N acts on a mass of 16 kg. find the resulting...
A net force of 64 N acts on a mass of 16 kg. find the resulting acceleration? (Ans: F=ma, a=4) An object has an acceleration of 3.0 m/s2 when the only force acting on it is F0. (a) What is its acceleration when this force is doubled? Explain (Ans: 6 m/s2) The mass of a body that weighs 2.00 N at sea level  is? (Ans: F=mg, m= 0.204) The acceleration due to gravity on the moon is only about 1/6 of...
This force can either push the block upward at a constant velocity or allow it to...
This force can either push the block upward at a constant velocity or allow it to slide downward at a constant velocity. The magnitude of the force is different in the two cases, while the directional angle θ is the same. Kinetic friction exists between the block and the wall, and the coefficient of kinetic friction is 0.310. The weight of the block is 55.0 N, and the directional angle for the force Upper F Overscript right-arrow EndScripts is θ...
When a constant force acts on an object, what does the object's change in momentum depend...
When a constant force acts on an object, what does the object's change in momentum depend upon?
A particle of mass 2.00 kg is attached to a spring with a force constant of...
A particle of mass 2.00 kg is attached to a spring with a force constant of 300 N/m. It is oscillating on a horizontal frictionless surface with an amplitude of 4.00 m. A 7.00 kg object is dropped vertically on top of the 2.00 kg object as it passes through its equilibrium point. The two objects stick together. (a) Does the amplitude of the vibrating system increase or decrease as a result of the collision? decreases increases no change (b)By...
A particle of mass 4.00 kg is attached to a spring with a force constant of...
A particle of mass 4.00 kg is attached to a spring with a force constant of 300 N/m. It is oscillating on a horizontal frictionless surface with an amplitude of 5.00 m. A 9.00 kg object is dropped vertically on top of the 4.00 kg object as it passes through its equilibrium point. The two objects stick together. a) By how much does the amplitude of the vibrating system change as a result of collision? b) By how much does...
A bucket of water of mass 30kg is pulled at constant velocity up to a platform...
A bucket of water of mass 30kg is pulled at constant velocity up to a platform 45m above the ground. This takes 16 minutes, during which time 3kg of water drips out at a steady rate through a hole in the bottom. Find the work needed to raise the bucket to the platform. (Use ?=9.8m/s^2) Work is joules
A mass m = 3.27 kg is attached to a spring of force constant k =...
A mass m = 3.27 kg is attached to a spring of force constant k = 60.9 N/m and set into oscillation on a horizontal frictionless surface by stretching it an amount A = 0.17 m from its equilibrium position and then releasing it. The figure below shows the oscillating mass and the particle on the associated reference circle at some time after its release. The reference circle has a radius A, and the particle traveling on the reference circle...
A 0.92 kg mass is attached to a light spring with a force constant of 30.9...
A 0.92 kg mass is attached to a light spring with a force constant of 30.9 N/m and set into oscillation on a horizontal friction-less surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass? in m/s ? (b) speed of the oscillating mass when the spring is compressed 1.5 cm? in m/s ? (c) speed of the oscillating mass as it passes the point 1.5 cm from...
1. A sled of mass m is pushed for 5 seconds at a constant force. A...
1. A sled of mass m is pushed for 5 seconds at a constant force. A sled of mass M (more) is also pushed for 5 seconds. THe force is the same in each case. WHat is the momentum of each sled? How do they compare? What is the energy of each sled? How do they compare? 2. The same question, except that each sled is pushed for 5 meters instead of 5 seconds.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT