In: Math
A random sample of ? measurements was selected from a population with standard deviation σ=11.7 and unknown mean μ. Calculate a 90 % confidence interval for μ for each of the following situations:
(a) ?=40, ?=72.1
≤. μ ≤
(b) ?=60, ?=72.1
μ ≤
(c) ?=85, ?=72.1
≤. μ. ≤
a)
90% confidence interval for
is
- Z *
/ sqrt(n) <
<
- Z *
/ sqrt(n)
72.1 - 1.645 * 11.7 / sqrt(40) <
< 72.1 + 1.645 * 11.7 / sqrt(40)
69.06 <
< 75.14
90% CI is ( 69.06 , 75.14 )
b)
90% confidence interval for
is
- Z *
/ sqrt(n) <
<
- Z *
/ sqrt(n)
72.1 - 1.645 * 11.7 / sqrt(60) <
< 72.1 + 1.645 * 11.7 / sqrt(60)
69.62 <
< 74.58
90% CI is ( 69.62 , 74.58)
b)
90% confidence interval for
is
- Z *
/ sqrt(n) <
<
- Z *
/ sqrt(n)
72.1 - 1.645 * 11.7 / sqrt(85) <
< 72.1 + 1.645 * 11.7 / sqrt(85)
70.01 <
< 74.19
90% CI is ( 70.01 , 74.19 )