In: Operations Management
Problem 3-22
Two independent methods of forecasting based on judgment and
experience have been prepared each month for the past 10 months.
The forecasts and actual sales are as follows:
| Month | Sales | Forecast 1 | Forecast 2 | 
| 1 | 830 | 800 | 780 | 
| 2 | 835 | 825 | 830 | 
| 3 | 790 | 800 | 820 | 
| 4 | 800 | 815 | 830 | 
| 5 | 785 | 820 | 815 | 
| 6 | 825 | 805 | 786 | 
| 7 | 775 | 770 | 805 | 
| 8 | 860 | 830 | 820 | 
| 9 | 810 | 805 | 785 | 
| 10 | 810 | 845 | 840 | 
a. Compute the MSE and MAD for each forecast.
(Round your answers to 2 decimal
places.)
| MSE | MAD | |
| Forecast 1 | ||
| Forecast 2 | ||
b. Compute MAPE for each forecast.
(Round your intermediate calculations to 5 decimal places
and final answers to 4 decimal places.)
| MAPE F1 | % | 
| MAPE F2 | % | 
Step 1
Calculate Error or deviation of forecast from Actual
Error = Forecast - Actual
e,g for Forecasrt method 1
Error for Month 1 = 800-830 = -30
Step2 :
Calculate Square of Error and Absolute value of Error
Step3
MAD = sum of Absolute Error / Number of Month = Average of Absolute Error
MSE = Sum of Error Square / Number of month = Average of error square
Forecast 1
| Month | Sales | Forecast 1 | Error | Absolute Error | Square Error | 
| 1 | 830 | 800 | -30 | 30 | 900 | 
| 2 | 835 | 825 | -10 | 10 | 100 | 
| 3 | 790 | 800 | 10 | 10 | 100 | 
| 4 | 800 | 815 | 15 | 15 | 225 | 
| 5 | 785 | 820 | 35 | 35 | 1225 | 
| 6 | 825 | 805 | -20 | 20 | 400 | 
| 7 | 775 | 770 | -5 | 5 | 25 | 
| 8 | 860 | 830 | -30 | 30 | 900 | 
| 9 | 810 | 805 | -5 | 5 | 25 | 
| 10 | 810 | 845 | 35 | 35 | 1225 | 
| Average | 19.5 | 512.5 | |||
MAD = 19.5
MSE = 512.5
Forecast Method 2
| Month | Sales | Forecast 2 | Error | Absolute Error | Square Error | 
| 1 | 830 | 780 | -50 | 50 | 2500 | 
| 2 | 835 | 830 | -5 | 5 | 25 | 
| 3 | 790 | 820 | 30 | 30 | 900 | 
| 4 | 800 | 830 | 30 | 30 | 900 | 
| 5 | 785 | 815 | 30 | 30 | 900 | 
| 6 | 825 | 786 | -39 | 39 | 1521 | 
| 7 | 775 | 805 | 30 | 30 | 900 | 
| 8 | 860 | 820 | -40 | 40 | 1600 | 
| 9 | 810 | 785 | -25 | 25 | 625 | 
| 10 | 810 | 840 | 30 | 30 | 900 | 
| Average | 30.9 | 1077.1 | |||
MAD = 30.9
MSE = 1077.1
| MSE | MAD | |
| Forecast1 | 512.5 | 19.5 | 
| Forecast2 | 1077.1 | 30.9 | 
b.
Calculate Absolute Error Percentage = Absolute Error / Actual Demand
E.g for Forecast method 1
for month 1
Absolute Error Percentage = 30/ 830 = 0.036145 = 3.6145 %
Calculate for all months
Mean Absolute Percentage Error, MAPE = Sum of absolute percentage error/ Number of months -= Average of absolute Percentage Error
Forecast 1
| Month | Sales | Forecast 1 | Error | Absolute Error | Absolute Percentage | 
| 1 | 830 | 800 | -30 | 30 | 3.6145% | 
| 2 | 835 | 825 | -10 | 10 | 1.1976% | 
| 3 | 790 | 800 | 10 | 10 | 1.2658% | 
| 4 | 800 | 815 | 15 | 15 | 1.8750% | 
| 5 | 785 | 820 | 35 | 35 | 4.4586% | 
| 6 | 825 | 805 | -20 | 20 | 2.4242% | 
| 7 | 775 | 770 | -5 | 5 | 0.6452% | 
| 8 | 860 | 830 | -30 | 30 | 3.4884% | 
| 9 | 810 | 805 | -5 | 5 | 0.6173% | 
| 10 | 810 | 845 | 35 | 35 | 4.3210% | 
| Average | 2.3908% | ||||
MAPE = 2.391%
Forecast 2
| Month | Sales | Forecast 2 | Error | Absolute Error | Absolute Percentage | 
| 1 | 830 | 780 | -50 | 50 | 6.0241% | 
| 2 | 835 | 830 | -5 | 5 | 0.5988% | 
| 3 | 790 | 820 | 30 | 30 | 3.7975% | 
| 4 | 800 | 830 | 30 | 30 | 3.7500% | 
| 5 | 785 | 815 | 30 | 30 | 3.8217% | 
| 6 | 825 | 786 | -39 | 39 | 4.7273% | 
| 7 | 775 | 805 | 30 | 30 | 3.8710% | 
| 8 | 860 | 820 | -40 | 40 | 4.6512% | 
| 9 | 810 | 785 | -25 | 25 | 3.0864% | 
| 10 | 810 | 840 | 30 | 30 | 3.7037% | 
| Average | 3.8032% | ||||
MAPE = 3.8032 %
| MAPE | |
| Forecast1 | 2.3908% | 
| Forecast2 | 3.8032% |