In: Statistics and Probability
Solution :
Given that ,
mean = = 87 minutes
standard deviation = = 22 minutes
a) 1 hour = 60 minutes
P(x > 60) = 1 - P(x < 60 )
= 1 - P[(x - ) / < (60-87) /22 ]
= 1 - P(z <-1.23 )
=1 - 0.1093 =0.8907
Probability = 0.8907
b ) half an hour = 30 minutes
P(x < 30 ) = P[(x - ) / < (30-87) /22 ]
= P(z < -2.59 )
= 0.0048
Probability = 0.0048
c ) 1 and 2 hours = 60 and 120 minutes
P(60 < x <120 ) = P[(60-87)/22 ) < (x - ) / < (120-87) / 22) ]
= P(-1.23 < z <1.5 )
= P(z < 1.5 ) - P(z < -1.23 )
= 0.9332 - 0.1093 =0.8239
Probability = 0.8239
d ) 90% is
P(Z < z ) = 0.90
z = 1.28
Using z-score formula,
x = z * +
x =1.28 * 22+87
x = 115.16
e) 25 % is
P(Z < z ) = 0.25
z = - 0.6745
Using z-score formula,
x = z * +
x = (-0.6745) * 22+87
x = 72.161