Question

In: Physics

When serving, a tennis player hits the ball horizontally. With a speed of 29.12 m/s. What...

When serving, a tennis player hits the ball horizontally. With a speed of 29.12 m/s. What minimum height, H (in m) from which the ball must be launched to just clear the 0.90 m high net about L = 17.65 m from the server.

How far from the end of the service box (which is a distance of S = 6.80 m from the net) will the ball land if it just clears the net? Use the positive direction if the ball is good (i.e. lands within the service box). Give your answer in meters.

For how long will the ball be in the air? (s)

Solutions

Expert Solution


Related Solutions

As a tennis ball is struck, it departs from the racket horizontally with a speed of...
As a tennis ball is struck, it departs from the racket horizontally with a speed of 29.0 m/s. The ball hits the court at a horizontal distance of 20.3 m from the racket. How far above the court is the tennis ball when it leaves the racket? m
During a tennis match, a player serves the ball at 28.6 m/s, with the center of...
During a tennis match, a player serves the ball at 28.6 m/s, with the center of the ball leaving the racquet horizontally 2.33 m above the court surface. The net is 12.0 m away and 0.900 m high. When the ball reaches the net, (a) what is the distance between the center of the ball and the top of the net? (b) Suppose that, instead, the ball is served as before but now it leaves the racquet at 5.00° below...
During a tennis match, a player serves the ball at 25.6 m/s, with the center of...
During a tennis match, a player serves the ball at 25.6 m/s, with the center of the ball leaving the racquet horizontally 2.34 m above the court surface. The net is 12.0 m away and 0.900 m high. When the ball reaches the net, (a) what is the distance between the center of the ball and the top of the net? (b) Suppose that, instead, the ball is served as before but now it leaves the racquet at 5.00° below...
A ball is kicked horizontally with 15 m/s initial speed from a cliff. The ball lands...
A ball is kicked horizontally with 15 m/s initial speed from a cliff. The ball lands 75 m away from the base of the cliff (R = 75m). What is the height of the cliff? What is the hitting velocity (the velocity of the ball before it hits the ground)? What is the total time of flight?
A billiard ball with speed of 3.0 m/s in the positive x direction hits an identical...
A billiard ball with speed of 3.0 m/s in the positive x direction hits an identical second billiard ball that is at rest at the origin. After the collision one of the balls has a momentum with an angle of -24 degrees respect to the positive x axis. The direction of the momentum of the second ball in degrees is:
A billiard ball with speed of 3.0 m/s in the positive x direction hits an identical...
A billiard ball with speed of 3.0 m/s in the positive x direction hits an identical second billiard ball that is at rest at the origin. After the collision one of the balls has a momentum with an angle of -24 degrees respect to the positive x axis. The direction of the momentum of the second ball in degrees is:
A billiard ball with speed of 3.0 m/s in the positive x direction hits an identical...
A billiard ball with speed of 3.0 m/s in the positive x direction hits an identical second billiard ball that is at rest at the origin. After the collision one of the balls has a momentum with an angle of -24 degrees respect to the positive x axis. The direction of the momentum of the second ball in degrees is:
A (field) hockey player is running north at a speed of 8 m⋅s−1. A ball is...
A (field) hockey player is running north at a speed of 8 m⋅s−1. A ball is coming directly towards her from the north at a speed of 18 m⋅s−1. She swings her stick forward, directly north, at a speed of 6 m⋅s−1 measured in her own frame of reference. What is the speed of the ball with respect to the hockey stick? Relative to the hockey stick, the ball is travelling at ____ m⋅s−1. Jane's brother Andrew leaves home for...
A 0.060-kg tennis ball, moving with a speed of 5.20 m/s , has a head-on collision...
A 0.060-kg tennis ball, moving with a speed of 5.20 m/s , has a head-on collision with a 0.085-kg ball initially moving in the same direction at a speed of 3.36 m/s . Assume that the collision is perfectly elastic. Part A: Determine the speed of the 0.060-kg ball after the collision. Part B: Determine the speed of the 0.085-kg ball after the collision.
A 0.060-kg tennis ball, moving with a speed of 5.32 m/s, has a head-on collision with...
A 0.060-kg tennis ball, moving with a speed of 5.32 m/s, has a head-on collision with a 0.090-kg ball initially moving in the same direction at a speed of 3.36 m/s. Assume that the collision is perfectly elastic. Determine the speed of the 0.060-kg ball after the collision. Determine the direction of the velocity of the 0.060-kg ball after the collision Determine the speed of the 0.090-kg ball after the collision. Determine the direction of the velocity of the 0.090-kg...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT