In: Statistics and Probability
Construct a 99% confidence interval on the population variance and the population standard deviation for the data listed below:
91.8, 112.1, 138.3, 90.6, 136.6, 113.6, 101.5, 123.6, 81.4, 119.2, 111.4, 89.4, 110.5, 80.5, 94.8, 117.0, 105.7, 146.6, 138.6, 99.9, 106.6
Values ( X ) | ||
91.8 |
330.7197 | |
112.1 | 4.4703 | |
138.3 | 801.6996 | |
90.6 | 375.8054 | |
136.6 | 708.321 | |
113.6 | 13.0632 | |
101.5 | 72.0071 | |
123.6 | 185.3492 | |
81.4 | 817.1422 | |
119.2 | 84.9033 | |
111.4 | 2.0002 | |
89.4 | 423.771 | |
110.5 | 0.2645 | |
80.5 | 869.4065 | |
94.8 | 230.6055 | |
117 | 49.2004 | |
105.7 | 18.3672 | |
146.6 | 1340.607 | |
138.6 | 818.7782 | |
99.9 | 101.7213 | |
106.6 | 11.463 | |
Total | 2309.7 | 7259.6658 |
Mean
Standard deviation
n = 21
Lower Limit =
Upper Limit =
99% Confidence interval is ( 181.5058 , 976.5732 )
( 181.5058 < <
976.5732 )
For Standard deviation
( 13.4724 < < 31.2502 )