Question

In: Physics

An equilateral triangle 7.0 m on a side has a m1 = 25.00 kg mass at...

An equilateral triangle 7.0 m on a side has a m1 = 25.00 kg mass at one corner, a m2 = 85.00 kg mass at another corner, and a m3 = 115.00 kg mass at the third corner. Find the magnitude and direction of the net force acting on the 25.00 kg mass.

Solutions

Expert Solution

Given is:-

Side  

now,

the gravitational force between two masses is given by

the diagram of the given problem is as shown below:

The angle in above diagram is  

Now,

The Forces are

which gives us

Similarly

which gives us

The net force on x axis is

which gives us

Now

which gives us

and

which gives us

the net force in y direction is

which gives us

Therefore the magnitude of the net force is

by plugging the values we get

which gives us

and the direction of the net force is

thus

which gives us


Related Solutions

Find the height of equilateral triangle if side is = 10in
Find the height of equilateral triangle if side is = 10in
The drawing shows an equilateral triangle, each side of which has a length of 3.99 cm....
The drawing shows an equilateral triangle, each side of which has a length of 3.99 cm. Point charges are fixed to each corner, as shown. The 4.00 C charge experiences a net force due to the charges qA and qB. This net force points vertically downward and has a magnitude of 305 N. Determine (a) charge qA, (b) charge qB.
three charged particles are placed at the corners of an equilateral triangle of side 1.20m. the...
three charged particles are placed at the corners of an equilateral triangle of side 1.20m. the charges are q1 =3.0 q2=-.85uc and q3= -6.0uc. Calculate the magnitude and direction of the net force on each s ide due to the other two. assume the +x axis points to the right that is from q2 to q3. q2 to q3 is along x axis q1 is above it. please show steps.
Three identical stars of mass M form an equilateral triangle that rotates around the triangle’s center...
Three identical stars of mass M form an equilateral triangle that rotates around the triangle’s center as the stars move in a common circle about that center. The triangle has edge length L. What is the speed of the stars? b.) What is the period of revolution? c.) What is the total potential energy of the 3 star system? Express your answers in terms of the star mass M and triangle edge length L. Hint: Draw a diagram showing the...
Four disks of mass m= 50 g radius r= 1.25 cm arranged into an equilateral triangle...
Four disks of mass m= 50 g radius r= 1.25 cm arranged into an equilateral triangle of side lengths= 3 cm. (One disk is at each corner of the triangle and one is in the center.) How much torque would you need to apply to flip the spinner over in 0.1 s?
Three point charges are located on the corners of an equilateral triangle 50cm side: The charge...
Three point charges are located on the corners of an equilateral triangle 50cm side: The charge q_1 = + 10µC is at the origin, The charge q_2 = + 9µC in the upper corner of the triangle, at charge q_3 = -6 µC located at the x axis What is the value of the potential energy of the system of the three charges?
Three point charges are located on the corners of an equilateral triangle 50cm side: The charge...
Three point charges are located on the corners of an equilateral triangle 50cm side: The charge q_1 = + 10µC is at the origin, The charge q_2 = + 9µC in the upper corner of the triangle, at charge q_3 = -6 µC located at the x axis. What is the total force (magnitude and direction) exerted on q_1
three charges are placed on the corners of an equilateral triangle with side lenght L. calculate...
three charges are placed on the corners of an equilateral triangle with side lenght L. calculate the force on the bootom right charge. Record your answer as a vector in i,j,k. your answer should be in term of k,L and Q
Find the volume V of a regular tetrahedron whose face is an equilateral triangle of side...
Find the volume V of a regular tetrahedron whose face is an equilateral triangle of side 8. Find the area of the horizontal cross-section A at the level z=4.
A wood cube 0.40 m on each side has a density of 750 kg/m³ What mass...
A wood cube 0.40 m on each side has a density of 750 kg/m³ What mass has to be placed on top of the wood so that its top is just at the water level?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT