In: Statistics and Probability
Part a)
p̂1 = 600 / 1000 = 0.6
p̂2 = 280 / 1000 = 0.28
Test Statistic :-
Z = ( p̂1 - p̂2 ) / √( p̂ * q̂ * (1/n1 + 1/n2) ))
p̂ is the pooled estimate of the proportion P
p̂ = ( x1 + x2) / ( n1 + n2)
p̂ = ( 600 + 280 ) / ( 1000 + 1000 )
p̂ = 0.44
q̂ = 1 - p̂ = 0.56
Z = ( 0.6 - 0.28) / √( 0.44 * 0.56 * (1/1000 + 1/1000) )
Z = 14.415
Part b)
P value = P ( Z > 14.415 ) = 0
Looking for Z = 14.415 in standard normal table to find the P
value.
Part c)
Test Criteria :-
Reject null hypothesis if Z > Z(α)
Z(α) = Z(0.05) = 1.645
Z > Z(α) = 14.415 > 1.645, hence we reject the null
hypothesis
Conclusion :- We Reject H0
Yes, we reject null hypothesis
Part d)
p̂1 = 0.6
p̂2 = 0.28
q̂1 = 1 - p̂1 = 0.4
q̂2 = 1 - p̂2 = 0.72
n1 = 1000
n2 = 1000
(p̂1 - p̂2) ± Z(α/2) * √( ((p̂1 * q̂1)/ n1) + ((p̂2 * q̂2)/ n2)
)
Z(α/2) = Z(0.05 /2) = 1.960
Lower Limit = ( 0.6 - 0.28 )- Z(0.05/2) * √(((0.6 * 0.4 )/ 1000 ) +
((0.28 * 0.72 )/ 1000 ) = 0.2788
upper Limit = ( 0.6 - 0.28 )+ Z(0.05/2) * √(((0.6 * 0.4 )/ 1000 ) +
((0.28 * 0.72 )/ 1000 )) = 0.3612
95% Confidence interval is ( 0.2788 , 0.3612
)
( 0.2788 < ( P1 - P2 ) < 0.3612 )