Question

In: Advanced Math

Let n be a positive integer. Prove that two numbers n2+3n+6 and n2+2n+7 cannot be prime...

Let n be a positive integer. Prove that two numbers n2+3n+6 and n2+2n+7 cannot be prime at the same time.

Solutions

Expert Solution

The proof is given as


Related Solutions

Let n be a positive integer. Prove that if n is composite, then n has a...
Let n be a positive integer. Prove that if n is composite, then n has a prime factor less than or equal to sqrt(n) . (Hint: first show that n has a factor less than or equal to sqrt(n) )
7. Let m be a fixed positive integer. (a) Prove that no two among the integers...
7. Let m be a fixed positive integer. (a) Prove that no two among the integers 0, 1, 2, . . . , m − 1 are congruent to each other modulo m. (b) Prove that every integer is congruent modulo m to one of 0, 1, 2, . . . , m − 1.
Please prove 1. Every positive integer is a product of prime numbers. 2. If a and...
Please prove 1. Every positive integer is a product of prime numbers. 2. If a and b are relatively prime, and a|bc, then a|c. 3. The division algorithm for F[x]. Just the existence part only, not the uniqueness part
A positive integer n is said to be prime (or, "a prime") if and only if...
A positive integer n is said to be prime (or, "a prime") if and only if n is greater than 1 and is divisible only by 1 and n . For example, the integers 17 and 29 are prime, but 4, 21 and 38 are not prime. Write a function named "is_prime" that takes a positive integer argument and returns as its value the integer 1 if the argument is prime and returns the integer 0 otherwise. Can you make...
Use induction to prove that 2 + 4 + 6 + ... + 2n = n2...
Use induction to prove that 2 + 4 + 6 + ... + 2n = n2 + n for n ≥ 1. Prove this theorem as it is given, i.e., don’t first simplify it algebraically to some other formula that you may recognize before starting the induction proof. I'd appreciate if you could label the steps you take, Thank you!
Suppose a is a positive integer and p is a prime/ Prove that p|a if and...
Suppose a is a positive integer and p is a prime/ Prove that p|a if and only if the prime factorization of a contains p. Can someone please show a full proof to this, thank you.
Let G be an abelian group and n a fixed positive integer. Prove that the following...
Let G be an abelian group and n a fixed positive integer. Prove that the following sets are subgroups of G. (a) P(G, n) = {gn | g ∈ G}. (b) T(G, n) = {g ∈ G | gn = 1}. (c) Compute P(G, 2) and T(G, 2) if G = C8 × C2. (d) Prove that T(G, 2) is not a subgroup of G = Dn for n ≥ 3 (i.e the statement above is false when G is...
a) Let T(n) be a running time function defined as T(n) = 3n^2 + 2n +...
a) Let T(n) be a running time function defined as T(n) = 3n^2 + 2n + 5, is this ϴ(n^2 )? Explain prove your answer using the definitions of big-o and omega notations. b) Solve the following recurrence relations using Master theorem. a. ?(?) = 3? ( ?/3 ) + ? b. ?(?) = 5?( ?/2 ) + 2?^2 please help them with both
Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2)...
Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2) Prove that a finite set with n elements has 2n subsets (3) Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps
Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for...
Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for all integers n Show all work
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT