In: Math
An experiment was conducted to see the effectiveness of two
antidotes to three different doses of a toxin. The antidote was
given to a different sample of participants five minutes after the
toxin. Twenty-five minutes later the response was measured as the
concentration in the blood. What can the researchers conclude with
α = 0.01?
Dose | |||
Antidote | 5 | 10 | 15 |
1 | 0.6 1.1 1.1 |
2.1 1.5 6.2 |
3.1 4.1 5.9 |
2 | 1.1 1.2 1.1 |
1.7 1.3 1.5 |
2.1 3.1 2.1 |
a) What is the appropriate test statistic?
---Select--- na one-way ANOVA within-subjects ANOVA two-way
ANOVA
b) Compute the appropriate test statistic(s) to
make a decision about H0.
Antidote: critical value = ; test
statistic =
Decision: ---Select--- Reject H0 Fail to reject H0
Dose: critical value = ; test statistic
=
Decision: ---Select--- Reject H0 Fail to reject H0
Interaction: critical value = ; test
statistic =
Decision: ---Select--- Reject H0 Fail to reject H0
Anova: Two-Factor With Replication | ||||||
SUMMARY | 5 | 10 | 15 | Total | ||
1 | ||||||
Count | 3 | 3 | 3 | 9 | ||
Sum | 2.8 | 9.8 | 13.1 | 25.7 | ||
Average | 0.933333 | 3.266667 | 4.366667 | 2.855556 | ||
Variance | 0.083333 | 6.543333 | 2.013333 | 4.465278 | ||
2 | ||||||
Count | 3 | 3 | 3 | 9 | ||
Sum | 3.4 | 4.5 | 7.3 | 15.2 | ||
Average | 1.133333 | 1.5 | 2.433333 | 1.688889 | ||
Variance | 0.003333 | 0.04 | 0.333333 | 0.431111 | ||
Total | ||||||
Count | 6 | 6 | 6 | |||
Sum | 6.2 | 14.3 | 20.4 | |||
Average | 1.033333 | 2.383333 | 3.4 | |||
Variance | 0.046667 | 3.569667 | 2.06 | |||
ANOVA | ||||||
Source of Variation | SS | df | MS | F | P-value | |
Sample | 6.125 | 1 | 6.125 | 4.075786 | 0.066418 | |
Columns | 16.91444 | 2 | 8.457222 | 5.627726 | 0.018877 | |
Interaction | 4.223333 | 2 | 2.111667 | 1.405176 | 0.282941 | |
Within | 18.03333 | 12 | 1.502778 | |||
Total | 45.29611 | 17 |
c) ANTIDOTE = SSeffect / SStotal= 6.125/45.2961=0.14 (small)
DOSE =SSeffect / SStotal = 16.91/45.296 = 0.37 medium
INTERACTION = SSeffect / SStotal = 4.22/45.296 = 0.09 (SMALL)
d)
There is no antidote difference in blood concentration.
There is no dose difference in blood concentration
There is no antidote by dose interaction in blood concentration.