Question

In: Physics

A 63.0-kg survivor of a cruise line disaster rests atop a block of Styrofoam insulation, using...

A 63.0-kg survivor of a cruise line disaster rests atop a block of Styrofoam insulation, using it as a raft. The Styrofoam has dimensions 2.00 m ✕ 2.00 m ✕ 0.0895 m. The bottom 0.023 m of the raft is submerged.

(a) Draw a force diagram of the system consisting of the survivor and raft.

(b) Write Newton's second law for the system in one dimension, using B for buoyancy, w for the weight of the survivor, and wr for the weight of the raft. (Set a = 0. Solve for Fy, the y-component of the net force. Let upward be the positive y-direction.)

(c) Calculate the numeric value for the buoyancy, B. (Seawater has density 1025 kg/m3. Enter answer to at least the ones digit.)

(d) Using the value of B and the weight w of the survivor, calculate the weight wr of the Styrofoam.

(e) What is the density of the Styrofoam? (f) What is the maximum buoyant force, corresponding to the raft being submerged up to its top surface?

(g) What total mass of survivors can the raft support?

Solutions

Expert Solution

(a) Here is the free body diagram

Notice that the weight of raft and weight of survivor acts down.

wr is weight of raft, w is weight of survivor and B is buoyant force.

----------------------------------------------------------------

(b)

Using Newton's second law, we have

B - w - wr = 0

-------------------------------------

(c) B = * g * V

where V is volume displaced

B = 1025 * 9.8 * 2 * 2 * 0.023

B = 924.14 N

----------------------------------

(d) using Newton's second law equation found above

wr = B - w

w is weight of survivor

wr = 924.14 - (63 * 9.8)

wr = 306.74 N

--------------------------------------

(e)

density = mass / volume

where

m = 306.74 / 9.8 = 31.3 kg

V = 2 * 2 * 0.0895 = 0.358 m3

so,

density = 87.43 kg / m3

----------------------------------------------

(f) here, we will consider total volume of raft

B = 1025 * 9.8 * 2 * 2 * 0.0895

B = 3596.11 N

---------------------------------------------

(g) again use Newton's equation

3596.11 - m * 9.8 - 306.74 = 0

3596.11 - 306.74 =  m * 9.8

m = 335.65 kg


Related Solutions

A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of...
A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of mass m2=9.4 kg hangs from an ideal cord of negligible mass, which runs over an ideal pulley and then is connected to the side of the first block. The blocks are released from rest. How far will block 1 move during the 1.1 second interval?
A thin block of soft wood with a mass of 0.078 kg rests on a horizontal...
A thin block of soft wood with a mass of 0.078 kg rests on a horizontal frictionless surface. A bullet with a mass of 4.67 g is fired with a speed of 601 m/s at a block of wood and passes completely through it. The speed of the block is 21 m/s immediately after the bullet exits the block. (a) Determine the speed (in m/s) of the bullet as it exits the block. m/s (b) Determine if the final kinetic...
A 16.3-kg block rests on a horizontal table and is attached to one end of a...
A 16.3-kg block rests on a horizontal table and is attached to one end of a massless, horizontal spring. By pulling horizontally on the other end of the spring, someone causes the block to accelerate uniformly and reach a speed of 5.99 m/s in 1.37 s. In the process, the spring is stretched by 0.180 m. The block is then pulled at a constant speed of 5.99 m/s, during which time the spring is stretched by only 0.0584 m. Find...
A 11.4-kg block rests on a horizontal table and is attached to one end of a...
A 11.4-kg block rests on a horizontal table and is attached to one end of a massless, horizontal spring. By pulling horizontally on the other end of the spring, someone causes the block to accelerate uniformly and reach a speed of 4.08 m/s in 1.13 s. In the process, the spring is stretched by 0.231 m. The block is then pulled at a constant speed of 4.08 m/s, during which time the spring is stretched by only 0.0543 m. Find...
A 4.0- kg wooden block rests on a level table. The coefficient of friction between the block and the table is 0.23. A 5.0- kg mass is attached to the block
A 4.0- kg wooden block rests on a level table. The coefficient of friction between the block and the table is 0.23. A 5.0- kg mass is attached to the block by a horizontal string passed over a frictionless pulley of negligible mass. Now, the 5.0- kg mass is released and the whole system accelerates. What is the acceleration of the wooden block? What is the tension in the string during the acceleration? Determine the acceleration for the above situation when the coefficient...
Block B of mass 46.75-kg rests as shown on the upper surface of a 22.07-kg wedge A.
Block B of mass 46.75-kg rests as shown on the upper surface of a 22.07-kg wedge A. Assume that the system is released from rest and neglect the friction. Determine the acceleration of B. The magnitude of acceleration at B is _______ 
A 4.0- kg wooden block rests on a level table. The coefficient of friction between the...
A 4.0- kg wooden block rests on a level table. The coefficient of friction between the block and the table is 0.22. A 5.0- kg mass is attached to the block by a horizontal string passed over a frictionless pulley of negligible mass. Now, the 5.0- kg mass is released and the whole system accelerates. What is the acceleration of the wooden block? What is the tension in the string during the acceleration? Determine the acceleration for the above situation...
A 5.340 kg5.340 kg block of wood rests on a steel desk. The coefficient of static...
A 5.340 kg5.340 kg block of wood rests on a steel desk. The coefficient of static friction between the block and the desk is ?s=0.455μs=0.455 and the coefficient of kinetic friction is ?k=0.155.μk=0.155. At time ?=0,t=0, a force ?=14.7 NF=14.7 N is applied horizontally to the block. State the force of friction applied to the block by the table at times ?=0t=0 and ?>0 Consider the same situation, but this time the external force ?F is 29.6 N.29.6 N. Again,...
A block of mass 5 kg rests on a 30° inclined plane. The surface is rough....
A block of mass 5 kg rests on a 30° inclined plane. The surface is rough. The coefficient of friction between the surface and the block is 0.5. Find the frictional force exerted by the plane on the block. (N)
2 part question, Thumbs up promised A) A block with mass m = 17 kg rests...
2 part question, Thumbs up promised A) A block with mass m = 17 kg rests on a frictionless table and is accelerated by a spring with spring constant k = 4112 N/m after being compressed a distance x1 = 0.526 m from the spring’s unstretched length. The floor is frictionless except for a rough patch a distance d = 2.2 m long. For this rough path, the coefficient of friction is μk = 0.43. How much work is done...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT