Question

In: Physics

A 5.340 kg5.340 kg block of wood rests on a steel desk. The coefficient of static...

A 5.340 kg5.340 kg block of wood rests on a steel desk. The coefficient of static friction between the block and the desk is ?s=0.455μs=0.455 and the coefficient of kinetic friction is ?k=0.155.μk=0.155. At time ?=0,t=0, a force ?=14.7 NF=14.7 N is applied horizontally to the block. State the force of friction applied to the block by the table at times ?=0t=0 and ?>0

Consider the same situation, but this time the external force ?F is 29.6 N.29.6 N. Again, state the force of friction acting on the block at times ?=0t=0 and ?>0.

Solutions

Expert Solution

Given:

Mass of the wooden block,

Coefficient of static friction,

Coefficient of kinetic friction,

Frictional force = Coefficient of friction*Normal force

------------

Normal force,

--------------

Static frictional force,

-------------

Kinetic frictional force,

-------------

Given that the wooden block is resting on the steel desk.

In both cases, a horizontal force is applied to the wooden block. If the block is not moving, then the frictional force acting is the static frictional force. If the applied force is large enough to overcome the static frictional force, then the block will start moving and frictional force present will be the kinetic frictional force.

Consider the 1st case

Applied force,

In this case, the applied force is less than the static frictional force. Therefore the block will not move.

ANSWER: static frictional force.

==================

Consider the 2nd case

Applied force,

In this case, the applied force is larger than the static frictional force. The block will start moving and frictional force acting will be kinetic.

ANSWER: kinetic frictional force.

=============================


Related Solutions

A 50-kg block rests on a horizontal surface. The coefficient of static friction u(s) = 0.50....
A 50-kg block rests on a horizontal surface. The coefficient of static friction u(s) = 0.50. The coefficient of kinetic friction u(k) = 0.35. A force of 250 N is applied as shown (to the right). ***Please show all work and how to tell if accelerates or moves at constance velocity.*** A) The block remains at rest. B) The block moves and continues to move at a constant velocity. C) The block accelerates to the right. D) The block doesn't...
A mass of 8 kg rests on a floor with a coefficient of static friction of...
A mass of 8 kg rests on a floor with a coefficient of static friction of 0.88 and coefficient kinetic friction of 0.33. One force is applied vertically downward of 28 Newtons and another force is applied at an angle of 26 degrees below the horizontal. Calculate what the magnitude this force needs to be in order to begin to move the mass. If that force is removed and another force is applied at an angle of 26 degrees above...
A mass of 9 kg rests on a floor with a coefficient of static friction of...
A mass of 9 kg rests on a floor with a coefficient of static friction of 0.92 and coefficient kinetic friction of 0.37. One force is applied vertically downward of 22 Newtons and another force is applied at an angle of 26 degrees below the horizontal. Calculate what the magnitude this force needs to be in order to begin to move the mass. If that force is removed and another force is applied at an angle of 26 degrees above...
A thin block of soft wood with a mass of 0.078 kg rests on a horizontal...
A thin block of soft wood with a mass of 0.078 kg rests on a horizontal frictionless surface. A bullet with a mass of 4.67 g is fired with a speed of 601 m/s at a block of wood and passes completely through it. The speed of the block is 21 m/s immediately after the bullet exits the block. (a) Determine the speed (in m/s) of the bullet as it exits the block. m/s (b) Determine if the final kinetic...
A 4.0- kg wooden block rests on a level table. The coefficient of friction between the...
A 4.0- kg wooden block rests on a level table. The coefficient of friction between the block and the table is 0.22. A 5.0- kg mass is attached to the block by a horizontal string passed over a frictionless pulley of negligible mass. Now, the 5.0- kg mass is released and the whole system accelerates. What is the acceleration of the wooden block? What is the tension in the string during the acceleration? Determine the acceleration for the above situation...
A 4.0- kg wooden block rests on a level table. The coefficient of friction between the block and the table is 0.23. A 5.0- kg mass is attached to the block
A 4.0- kg wooden block rests on a level table. The coefficient of friction between the block and the table is 0.23. A 5.0- kg mass is attached to the block by a horizontal string passed over a frictionless pulley of negligible mass. Now, the 5.0- kg mass is released and the whole system accelerates. What is the acceleration of the wooden block? What is the tension in the string during the acceleration? Determine the acceleration for the above situation when the coefficient...
Consider a block (mass 12 kg) at rest on a flat plane. A static coefficient of...
Consider a block (mass 12 kg) at rest on a flat plane. A static coefficient of friction (μs = 0.3) exists between the block and the ground. If a force of 50 N is applied to the block find: (a) The acceleration of the block. (b) The velocity of the block after 3 seconds. (c) The displacement of the block from its starting location after 3 seconds.
A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of...
A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of mass m2=9.4 kg hangs from an ideal cord of negligible mass, which runs over an ideal pulley and then is connected to the side of the first block. The blocks are released from rest. How far will block 1 move during the 1.1 second interval?
Block A weighs 445N and block B weighs 130N. The coefficient of static friction between the...
Block A weighs 445N and block B weighs 130N. The coefficient of static friction between the inclined plane and block A is 0.565, and the coefficient of kinetic friction is 0.258. The plane is inclined at the angle θ = 42.0. (a) Find the acceleration of the system if A is initially at rest. (b) Find the acceleration of the system if A is initially moving up the incline. (c) What is the acceleration of the system if A is...
Block A weighs 445N and block B weighs 130N. The coefficient of static friction between the...
Block A weighs 445N and block B weighs 130N. The coefficient of static friction between the inclined plane and block A is 0.565, and the coefficient of kinetic friction is 0.258. The plane is inclined at the angle θ = 42.0. (a) Find the acceleration of the system if A is initially at rest. (b) Find the acceleration of the system if A is initially moving up the incline. (c) What is the acceleration of the system if A is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT