Question

In: Economics

Danny likes to buy books (x1), and CDs (x2) with his monthly allowance. a)     (2) Suppose that...

Danny likes to buy books (x1), and CDs (x2) with his monthly allowance.

a)     (2) Suppose that books cost $10 each and CDs cost $20 each, and Danny has $200 from his allowance to spend this month. Write down the equation of Danny’s budget line.

b)     (4) Suppose Danny’s utility function is U (x1, x2) = 2x1+ x2. What can you say about Danny’s preferences for books and CDs. What is Danny’s optimal choice of books and CDs? Show the solution on a graph with the budget line and utility function.

c)     (4) Suppose that additionally Danny’s Mom says that she will buy him 5 books every month. Show how the new budget line (with the gift of 5 books) will look like. What will Danny’s new optimal choice be?

d)     (3) If Danny is able to buy the first 5 books at regular price, all additional books are half price, draw Danny’s new budget line.

Solutions

Expert Solution


Related Solutions

Jason likes ribs, X1, and fried chicken, X2. His utility function is U(X1, X2) = 10...
Jason likes ribs, X1, and fried chicken, X2. His utility function is U(X1, X2) = 10 (X1) 2 (X2). His weekly income is $90, which he spends on ribs and chicken only. If he pays $10 for a slab of ribs and $5 for a chicken, to maximize his utility, what is his optimal consumption bundle? A. Jason would like to choose the consumption of ?1 and ?2 so that he maximizes his utility. Write down the formal utility maximization...
Suppose there are 2 goods, x1 and x2. The price of x1 goes up. x1 is...
Suppose there are 2 goods, x1 and x2. The price of x1 goes up. x1 is inferior, and x2 is normal. Using income and substitution effects, show which of the claims below is correct. Question options: x1 will decrease in quantity, but x2 will go up x1 may increase or decrease in quantity, the same is true for x2 the quantity of both goods will go down the quantity of both goods will go up
Suppose that a firm has the p production function f(x1; x2) = sqrt(x1) + x2^2. (a)...
Suppose that a firm has the p production function f(x1; x2) = sqrt(x1) + x2^2. (a) The marginal product of factor 1 (increases, decreases, stays constant) ------------ as the amount of factor 1 increases. The marginal product of factor 2 (increases, decreases, stays constant) ----------- as the amount of factor 2 increases. (b) This production function does not satisfy the definition of increasing returns to scale, constant returns to scale, or decreasing returns to scale. How can this be? (c)Find...
2.2.8. Suppose X1 and X2 have the joint pdf f(x1, x2) = " e−x1 e−x2 x1...
2.2.8. Suppose X1 and X2 have the joint pdf f(x1, x2) = " e−x1 e−x2 x1 > 0, x2 > 0 0 elsewhere . For constants w1 > 0 and w2 > 0, let W = w1X1 + w2X2. (a) Show that the pdf of W is fW (w) = " 1 w1− w2 (e−w/w1 − e−w/w2) w > 0 0 elsewhere . (b) Verify that fW (w) > 0 for w > 0. (c) Note that the pdf fW...
Amy has utility function u (x1, x2) = min { 2*(x1)^2*x2, x1*(x2)^2 }. Derive Amy's demand...
Amy has utility function u (x1, x2) = min { 2*(x1)^2*x2, x1*(x2)^2 }. Derive Amy's demand function for x1 and x2. For what values (if any) of m, p1, and p2 are the goods gross complements or gross substitutes of each other?
x1 + x2 - 2x4 = 2 x1 + x2 + 2x3 + 6x4 + x5...
x1 + x2 - 2x4 = 2 x1 + x2 + 2x3 + 6x4 + x5 = 8 −2x1 - 2x2 + x3 + 8x4 = −1 3x3 + 12x4 + 2x5 = 9 Let the linear system be given. a. Find the reduced row eelon form of the combined matrix (augmented matrix) of the system. b. Is the system consistent? If the system is consistent, find the overall solution of the system. c. Do all the solutions of the...
Suppose Amjad’s preferences for pants and shirts are represented by: U(x1,x2 )=x1^2 x2^3, and he faces...
Suppose Amjad’s preferences for pants and shirts are represented by: U(x1,x2 )=x1^2 x2^3, and he faces a linear budget constraint, 2x1+ x2=50. Given that the price of good 1 increases to 4, what are (1) the compensating and (2) equivalent variations? You must set up the Lagrangian and derive the demand functions for this question. Be sure to clearly identify which prices, old or new, are used to derive the values for EV vs. CV, and which utility, old or...
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the...
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the conditional densities (pdf) of X1|X2 = x2 and X2|X1 = x1. (b) Find the conditional expectation and variance of X1|X2 = x2 and X2|X1 = x1. (c) Compare the probabilities P(0 < X1 < 1/2|X2 = 3/4) and P(0 < X1 < 1/2). (d) Suppose that Y = E(X2|X1). Verify that E(Y ) = E(X2), and that var(Y ) ≤ var(X2).
Suppose that X1 and X2 are two random variables. Suppose that X1 has mean 1 and...
Suppose that X1 and X2 are two random variables. Suppose that X1 has mean 1 and variance 4 while X2 has mean 3 and variance 9. Finally, suppose that the correlation between X1 and X2 is 3/8. Denote Y = 2X1 − X2. (67) The mean of Y is (a) 1 (b) 4 (c) -2 (d) -1 (68) The variance of Y is (a) 25 (b) 4 (c) 9 (d) 16 (69) The standard deviation of Y is (a) 5...
Let X1, X2, X3 be independent having N(0,1). Let Y1=(X1-X2)/√2, Y2=(X1+X2-2*X3)/√6, Y3=(X1+X2+X3)/√3. Find the joint pdf...
Let X1, X2, X3 be independent having N(0,1). Let Y1=(X1-X2)/√2, Y2=(X1+X2-2*X3)/√6, Y3=(X1+X2+X3)/√3. Find the joint pdf of Y1, Y2, Y3, and the marginal pdfs.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT