Question

In: Advanced Math

\int \frac{x^6+5x^4+4x-3}{\left(x^2+3x+5\right)\left(x^2+7x+12\right)}dx

\int \frac{x^6+5x^4+4x-3}{\left(x^2+3x+5\right)\left(x^2+7x+12\right)}dx

Solutions

Expert Solution


Related Solutions

Evaluate the integral (x^3+2x^2-4x+5)/(3x^2+x-10)dx
Evaluate the integral (x^3+2x^2-4x+5)/(3x^2+x-10)dx
Integral x^5-x^4+4x^3-4x^2+8x-4 / ( x^3+2)^3(x^2-1) dx
Integral x^5-x^4+4x^3-4x^2+8x-4 / ( x^3+2)^3(x^2-1) dx
Differentiate each. give reasonably simplified answers. Box ANSERS. (a)=ln[(x^9*(5x+1)^4*(11x+2))/((8x+9)(3x^5-2x+1))] (b) y=log[((8x+3)^2 * (x^3+5x^2-9x+1))/(7x+3)^5] (c) Given f(x)=(4x)^10x^3,...
Differentiate each. give reasonably simplified answers. Box ANSERS. (a)=ln[(x^9*(5x+1)^4*(11x+2))/((8x+9)(3x^5-2x+1))] (b) y=log[((8x+3)^2 * (x^3+5x^2-9x+1))/(7x+3)^5] (c) Given f(x)=(4x)^10x^3, find f'(x) (d) Differentiate f(x)=4x^10x^3, find f'(x)
Show that f(x) = x^4+x^3+3x^2+7x−8 is irreducible over Z.
Show that f(x) = x^4+x^3+3x^2+7x−8 is irreducible over Z.
Question# 2 –A Max 7x 1 + 5x 2 S.t x 2 < 6 (1)   ...
Question# 2 –A Max 7x 1 + 5x 2 S.t x 2 < 6 (1)    3x 1 + 2x 2 < 18 (2)    x 1 + x 2 < 8 ( 3)    x 1 > 0 and x 2 > 0 Question #2-B IF we increase s.t two 12 hours & three 8 hours (MAX profit)
Find the equation of the osculating circle at the local minimum of 3x^3 -7x^2 +(11/3)x+4
Find the equation of the osculating circle at the local minimum of 3x^3 -7x^2 +(11/3)x+4
For the function f(x) = x^2 +3x / 2x^2 + 7x +3 find the following, and...
For the function f(x) = x^2 +3x / 2x^2 + 7x +3 find the following, and use it to graph the function. Find: a)(2pts) Domain b)(2pts) Intercepts c)(2pts) Symmetry d) (2pts) Asymptotes e)(4pts) Intervals of Increase or decrease f) (2pts) Local maximum and local minimum values g)(4pts) Concavity and Points of inflection and h)(2pts) Sketch the curve
Factor the following: a) f(x)=x^5+5x^4-21x^3-137x^2-88x+240, knowing that f(5)=0 and f(-3)=0. b) f(x)=x^3+8x^2+5x-50 c)f(x)=-x^4-4x^3+19x^2+46x-120, knowing that (x+5)...
Factor the following: a) f(x)=x^5+5x^4-21x^3-137x^2-88x+240, knowing that f(5)=0 and f(-3)=0. b) f(x)=x^3+8x^2+5x-50 c)f(x)=-x^4-4x^3+19x^2+46x-120, knowing that (x+5) and (x-2) are factors.
1. Consider the following curve f(x)= X^3 - 5x^2 +7x-5 Find the coordinates of the minimum and the maximum.
  1. Consider the following curve f(x)= X^3 - 5x^2 +7x-5 Find the coordinates of the minimum and the maximum. 2. The curve y= x^3 + ax^2 + bx + c has a relative max at x=-3 and a relative minimum at x= 1. Find the values of a and b. 3. Find the equation of the perpendicular line to the curve x^2 + 2xy - 2y^2 + x=2 at the point (-4,1) 4. Find the slant asymptote f(x)= (4x^2...
1. ʃ11-3x/(x^2+2x-3) dx 2. ʃ4x-16/(x^2-2x -3 )dx 3. ʃ(2x^2-9x-35)/(x+1)(x-2)(x+3) dx
1. ʃ11-3x/(x^2+2x-3) dx 2. ʃ4x-16/(x^2-2x -3 )dx 3. ʃ(2x^2-9x-35)/(x+1)(x-2)(x+3) dx
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT