Question

In: Math

Evaluate the integral (x^3+2x^2-4x+5)/(3x^2+x-10)dx

Evaluate the integral
(x^3+2x^2-4x+5)/(3x^2+x-10)dx

Solutions

Expert Solution


Related Solutions

Integral x^5-x^4+4x^3-4x^2+8x-4 / ( x^3+2)^3(x^2-1) dx
Integral x^5-x^4+4x^3-4x^2+8x-4 / ( x^3+2)^3(x^2-1) dx
1. ʃ11-3x/(x^2+2x-3) dx 2. ʃ4x-16/(x^2-2x -3 )dx 3. ʃ(2x^2-9x-35)/(x+1)(x-2)(x+3) dx
1. ʃ11-3x/(x^2+2x-3) dx 2. ʃ4x-16/(x^2-2x -3 )dx 3. ʃ(2x^2-9x-35)/(x+1)(x-2)(x+3) dx
Evaluate each integral using trig substitutions 1.) Integral of (3x^5dx)/(sqrt(16-x^2) 2.) Integral of (sqrt(x^2-16)dx)/x 3.) Integral...
Evaluate each integral using trig substitutions 1.) Integral of (3x^5dx)/(sqrt(16-x^2) 2.) Integral of (sqrt(x^2-16)dx)/x 3.) Integral of (6dx)/(16+16x^2)
evaluate the indefinite integral. ∫10x2−49x+21/(x−3)(x2−2x−3)dx
evaluate the indefinite integral. ∫10x2−49x+21/(x−3)(x2−2x−3)dx
Evaluate the integral. ∫4−2. (1/(x+5)((x^2)+16)) dx
Evaluate the integral. ∫4−2. (1/(x+5)((x^2)+16)) dx
1) Evaluate the integral from 0 to 1 (e^(2x) (x^2 + 4) dx) (a) What is...
1) Evaluate the integral from 0 to 1 (e^(2x) (x^2 + 4) dx) (a) What is the first step of your ‘new’ integral? (b) What is the final antiderivative step before evaluating? (c) What is the answer in simplified exact form? 2) indefinite integral (cos^2 2theta) / (cos^2 theta) dtheta (a) What is the first step of your ‘new’ integral? (b) What is the simplified integral before taking the antiderivative? (c) What is the answer in simplified form?
Evaluate the integral: ∫√36x^2−49 / x^3 dx (A) Which trig substitution is correct for this integral?...
Evaluate the integral: ∫√36x^2−49 / x^3 dx (A) Which trig substitution is correct for this integral? x=49/36sec(θ) x=7/6sec(θ) x=1/36sec(θ) x=6/7sec(θ) x=7/6sin(θ) (B) Which integral do you obtain after substituting for xx? Note: to enter θθ, type the word theta.    (C) What is the value of the above integral in terms of θ? (D) What is the value of the original integral in terms of x? Note: WAMAP does not recognize the inverse secant (arcsec) function. You will need to...
Evaluate the following integral ∫ ∫ R 4x + y (3x − y) ln(3x − y)...
Evaluate the following integral ∫ ∫ R 4x + y (3x − y) ln(3x − y) dA where R is the region bounded by the graphs of  y  =  3x − e7,  y  =  3x − e5,  y  =  −4x + 8,  and  y  =  −4x + 5. Use the change of variables  u  =  3x − y,  v  =  4x + y.
\int \frac{x^6+5x^4+4x-3}{\left(x^2+3x+5\right)\left(x^2+7x+12\right)}dx
\int \frac{x^6+5x^4+4x-3}{\left(x^2+3x+5\right)\left(x^2+7x+12\right)}dx
1. evaluate ∫ 8sec^3(2x)dx. Perform the substitution u= ∫ 8sec3(2x)dx=    ?     +c 2. evaluate ∫...
1. evaluate ∫ 8sec^3(2x)dx. Perform the substitution u= ∫ 8sec3(2x)dx=    ?     +c 2. evaluate ∫ sqrt(e^8x-36)dx Perform the substitution u= ∫ sqrt(e^8x-36)dx=   ?      +c 3. evaluate ∫ e^x / (16-e^2x)dx Perform the substitution u= ∫ e^x / (16-e^2x)dx = ?     +c 4. evaluate ∫cos^4(7x)dx. Perform the substitution u= ∫cos^4(7x)dx=   ?   +c
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT