In: Math
find the sample size needed to give with 99% confidence a margin of error of plus or minus 5% when estimating proportion within plus minus 4% within plus minus 1%
Solution :
Given that,
= 0.5
1 - = 0.5
a)
margin of error = E = 0.05
At 99% confidence level the z is ,
= 1 - 99% = 1 - 0.99 = 0.01
/ 2 = 0.01 / 2 = 0.005
Z/2 = Z0.005 = 2.576
sample size = n = (Z / 2 / E )2 * * (1 - )
= (2.576 / 0.05)2 * 0.5*0.5
= 663.58
sample size = 664
b)
margin of error = E = 0.04
sample size = n = (Z / 2 / E )2 * * (1 - )
= (2.576 / 0.04)2 * 0.5*0.5
= 1036.84
sample size = 1037
c)
margin of error = E = 0.01
sample size = n = (Z / 2 / E )2 * * (1 - )
= (2.576 / 0.01)2 * 0.5*0.5
= 16589.44
sample size = 16590