In: Finance
Consider the following scenario analysis
Rate of Return
Scenario Probability Stocks Bonds
recession 0.20 -5% 14%
Normal economy 0.60 15 8
Boom 0.20 25 4
Is it reasonable to assume that treasury bonds will provide higher returns in recessions than in booms?
Calculate the expected rate of return and return and standard deviation for each investment. (Do not round intermediate calculations. Enter your answers as a percent rounded to 1 decimal place.)
Stocks | Bonds | |||||||||||
Expected rate of return | 13.0% | 8.4% | ||||||||||
Standard deviation | 9.8% | 3.2% | ||||||||||
Working: | ||||||||||||
Stocks: | Bonds: | |||||||||||
# 1 | Calculation of expected return | # 1 | Calculation of expected return | |||||||||
Scenerio | Probability | Rate of return | Scenerio | Probability | Rate of return | |||||||
a | b | a*b | a | b | a*b | |||||||
Recession | 0.20 | -0.0500 | -0.0100 | Recession | 0.20 | 0.1400 | 0.0280 | |||||
Normal Economy | 0.60 | 0.1500 | 0.0900 | Normal Economy | 0.60 | 0.0800 | 0.0480 | |||||
Boom | 0.20 | 0.2500 | 0.0500 | Boom | 0.20 | 0.0400 | 0.0080 | |||||
Total | 0.1300 | Total | 0.0840 | |||||||||
# 2 | Calculation of variance: | # 2 | Calculation of variance: | |||||||||
Scenerio | Probability | Rate of return | Expected return | Scenerio | Probability | Rate of return | Expected return | |||||
a | b | c | d=((b-c)^2)*a | a | b | c | d=((b-c)^2)*a | |||||
Recession | 0.20 | -0.0500 | 0.1300 | 0.00648 | Recession | 0.20 | 0.1400 | 0.0840 | 0.00063 | |||
Normal Economy | 0.60 | 0.1500 | 0.1300 | 0.00024 | Normal Economy | 0.60 | 0.0800 | 0.0840 | 0.00001 | |||
Boom | 0.20 | 0.2500 | 0.1300 | 0.00288 | Boom | 0.20 | 0.0400 | 0.0840 | 0.00039 | |||
Total | 0.00960 | Total | 0.00102 | |||||||||
# 3 | Calculation of standard deviation | # 3 | Calculation of standard deviation | |||||||||
Standard deviation | = | Variance | ^ (1/2) | Standard deviation | = | Variance | ^ (1/2) | |||||
= | 0.00960 | ^ (1/2) | = | 0.00102 | ^ (1/2) | |||||||
= | 0.09798 | = | 0.032 |