Question

In: Electrical Engineering

The length of a magnetic circuit of a relay is 25 cm and the cross-sectional area...

  1. The length of a magnetic circuit of a relay is 25 cm and the cross-sectional area is 6.25 cm2. The length of the air-gap in the operated position of the relay is 0.2 mm. Calculate the magnetomotive force required to produce a flux of 1.25 mWb in the air gap. The relative permeability of magnetic material at this flux density is 200. Calculate also the reluctance of the magnetic circuit when the relay is in the unoperated position, the air-gap then being 8 mm long (assume μr remains constant).

[2307 AT, 1.18 x 107 AT/Wb]

Solutions

Expert Solution



Related Solutions

A cylindrical copper rod of length 1.60 m and cross-sectional area 7.10 cm^2 is insulated to...
A cylindrical copper rod of length 1.60 m and cross-sectional area 7.10 cm^2 is insulated to prevent heat loss through its surface. The ends are maintained at a temperature difference of 100 degrees C by having one end in a water-ice mixture and the other in boiling water and steam. Find the rate at which ice melts at one end (in grams/second).
A solenoid that is 112 cm long has a cross-sectional area of 14.9 cm2. There are...
A solenoid that is 112 cm long has a cross-sectional area of 14.9 cm2. There are 1310 turns of wire carrying a current of 7.32 A. (a) Calculate the energy density of the magnetic field inside the solenoid. (b) Find the total energy in joules stored in the magnetic field there (neglect end effects).
A solenoid that is 91.4 cm long has a cross-sectional area of 24.8 cm2. There are...
A solenoid that is 91.4 cm long has a cross-sectional area of 24.8 cm2. There are 811 turns of wire carrying a current of 8.08 A. (a) Calculate the energy density of the magnetic field inside the solenoid. (b) Find the total energy in joules stored in the magnetic field there (neglect end effects).
A brass rod with a length of 1.23 m and a cross-sectional area of 1.53 cm2...
A brass rod with a length of 1.23 m and a cross-sectional area of 1.53 cm2 is fastened end to end to a nickel rod with length Land cross-sectional area 1.29 cm2 . The compound rod is subjected to equal and opposite pulls of magnitude 3.57×104 Nat its ends. a- Find the length L of the nickel rod if the elongations of the two rods are equal. (in m) b- What is the stress in the brass rod? (in Pa)...
1.2 A high cylinder with a cross-sectional area of ​​12.0 cm ^ 2 was partially filled...
1.2 A high cylinder with a cross-sectional area of ​​12.0 cm ^ 2 was partially filled with mercury whose density is 13.6 x 10^3 kg / m ^ 3; The surface of the mercury is at a height of 5.00 cm above the base of the cylinder. Water (1.00 x 10 ^ 3 kg / m ^ 3) is slowly poured over the mercury and it is observed that these two liquids do not mix. What volume of water should...
A cylinder of height 10 cm and cross sectional area of 1 cm2 is submerged inside...
A cylinder of height 10 cm and cross sectional area of 1 cm2 is submerged inside two immiscible liquids of specific gravity 1.1 and 1.0 respectively. The cylinder is in equilibrium in such a way that 5 cm of its height is submerged in the bottom liquid and 2 cm above the surface of the two liquids. In order the cylinder to be completely submerged inside the two liquids find the value of the mass of an object that needs...
A long solenoid (black coil) with cross-sectional area A and length L is wound with N1...
A long solenoid (black coil) with cross-sectional area A and length L is wound with N1 turns of wire. (Figure 1) A time-varying current i1 flows through this wire. A shorter coil (blue coil) with N2 turns of wire surrounds it. Use μ0 for the permeability of free space. Find the value M of the mutual inductance. Note: The current in black coil is constantly changing. However, when using the hints it may help you to consider the instant at...
A very long, straight solenoid with a cross-sectional area of 5.85 cm^2 is wound with 32...
A very long, straight solenoid with a cross-sectional area of 5.85 cm^2 is wound with 32 turns of wire per centimeter, and the windings carry a current of 0.245 A . A secondary winding of 2 turns encircles the solenoid at its center. When the primary circuit is opened, the magnetic field of the solenoid becomes zero in 4.75×10^−2 s . What is the average induced emf in the secondary coil?
Question 1 A copper tube having a cross-sectional area of 2000 mm2 and length of 300...
Question 1 A copper tube having a cross-sectional area of 2000 mm2 and length of 300 mm is placed between two rigid caps. Four 22 mm diameter steel bolts are symmetrically arranged parallel to the axis of the tube and are lightly fastened. Calculate: The stress in the tube if the temperature of the assembly is raised by 700C. The load each bolt will carry at the raised temperature.                                               EST = 200 GPa;   αST = 12 x 10-6...
A 1.5 m length of wire has a cross-sectional area of 5.0×10−8 m2. When the potential...
A 1.5 m length of wire has a cross-sectional area of 5.0×10−8 m2. When the potential difference across its ends is 0.20 V, it carries a current of 0.40 A. What is the resistivity of the material from which the wire is made?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT