Question

In: Physics

A very long, straight solenoid with a cross-sectional area of 5.85 cm^2 is wound with 32...

A very long, straight solenoid with a cross-sectional area of 5.85 cm^2 is wound with 32 turns of wire per centimeter, and the windings carry a current of 0.245 A . A secondary winding of 2 turns encircles the solenoid at its center. When the primary circuit is opened, the magnetic field of the solenoid becomes zero in 4.75×10^−2 s .

What is the average induced emf in the secondary coil?

Solutions

Expert Solution

Solution:

Cross sectional area = A= 5.85 cm^2 = 5.85 x 10^-4 m^2

No. of turns = Np = 32 /cm = 3200 /m

Current thru the windings = 0.245 A

NUmber of turns of Secondary windings = Ns = 2

Time for the B field to become 0 = 4.75 e-2 s

The peak voltages and peak currents are related to the number of turns of primary and secondary as folows:

V1/V2 = I2/I1 = N1/N2 where the subscrits 1 correspond to primary and 2 to secondary.

First let us find the Magnetic field thru th eprimary :

B1= o N1 I = (4 x10^-7) ( 3200)( 0.245) = 1909 x10^-7 T = 9.85 x10^-4 T

Flux thru the secondary = magnetic field in the coil x area of the coil = (9.85 x 10^-4 ) ( 5.85 x 10^-4 m^2)

                                                                                                             = 5.76 x 10^-7 Tm^2

Induced EF thru the secondary = V2 = flux X no. of turn in the secondary / time [ Faraday's law ]

                                                          = (5.76 x 10^-7) ( 2) /(0.0475) = 242.5 x 10^-7 Volts

                                                                                                          = 24.25 micro volts

                                                                                                          = 24 V


Related Solutions

A long solenoid (black coil) with cross-sectional area A and length L is wound with N1...
A long solenoid (black coil) with cross-sectional area A and length L is wound with N1 turns of wire. (Figure 1) A time-varying current i1 flows through this wire. A shorter coil (blue coil) with N2 turns of wire surrounds it. Use μ0 for the permeability of free space. Find the value M of the mutual inductance. Note: The current in black coil is constantly changing. However, when using the hints it may help you to consider the instant at...
A solenoid that is 112 cm long has a cross-sectional area of 14.9 cm2. There are...
A solenoid that is 112 cm long has a cross-sectional area of 14.9 cm2. There are 1310 turns of wire carrying a current of 7.32 A. (a) Calculate the energy density of the magnetic field inside the solenoid. (b) Find the total energy in joules stored in the magnetic field there (neglect end effects).
A solenoid that is 91.4 cm long has a cross-sectional area of 24.8 cm2. There are...
A solenoid that is 91.4 cm long has a cross-sectional area of 24.8 cm2. There are 811 turns of wire carrying a current of 8.08 A. (a) Calculate the energy density of the magnetic field inside the solenoid. (b) Find the total energy in joules stored in the magnetic field there (neglect end effects).
A long solenoid (n = 1500 turns/m) has a cross-sectional area of 0.40 m2 and a...
A long solenoid (n = 1500 turns/m) has a cross-sectional area of 0.40 m2 and a current given by I = 3.0t A, where t is in seconds. A flat circular coil (N = 500 turns) with a cross-sectional area of 0.15 m2 is inside and coaxial with the solenoid. What is the magnitude of the emf induced in the coil at t = 2.0 s?
A very long solenoid with a circular cross section and radius r1= 1.40 cm with ns=...
A very long solenoid with a circular cross section and radius r1= 1.40 cm with ns= 300 turns/cm lies inside a short coil of radius r2= 4.40 cm and Nc= 30 turns. If the current in the solenoid is ramped at a constant rate from zero to Is= 2.10 A over a time interval of 75.0 ms, what is the magnitude of the emf in the outer coil while the current in the solenoid is changing? What is the mutual...
A very long solenoid with a circular cross section and radius r1= 1.50 cm with ns=...
A very long solenoid with a circular cross section and radius r1= 1.50 cm with ns= 100 turns/cm lies inside a short coil of radius r2= 3.70 cm and Nc= 33 turns. If the current in the solenoid is ramped at a constant rate from zero to Is= 2.30 A over a time interval of 72.0 ms, what is the magnitude of the emf in the outer coil while the current in the solenoid is changing? What is the mutual...
A long, straight, copper wire with a circular cross-sectional area of 2.1 mm2 carries a current...
A long, straight, copper wire with a circular cross-sectional area of 2.1 mm2 carries a current of 22 A. The resistivity of the material is 2.00 10-8?
1.2 A high cylinder with a cross-sectional area of ​​12.0 cm ^ 2 was partially filled...
1.2 A high cylinder with a cross-sectional area of ​​12.0 cm ^ 2 was partially filled with mercury whose density is 13.6 x 10^3 kg / m ^ 3; The surface of the mercury is at a height of 5.00 cm above the base of the cylinder. Water (1.00 x 10 ^ 3 kg / m ^ 3) is slowly poured over the mercury and it is observed that these two liquids do not mix. What volume of water should...
The length of a magnetic circuit of a relay is 25 cm and the cross-sectional area...
The length of a magnetic circuit of a relay is 25 cm and the cross-sectional area is 6.25 cm2. The length of the air-gap in the operated position of the relay is 0.2 mm. Calculate the magnetomotive force required to produce a flux of 1.25 mWb in the air gap. The relative permeability of magnetic material at this flux density is 200. Calculate also the reluctance of the magnetic circuit when the relay is in the unoperated position, the air-gap...
A cylindrical copper rod of length 1.60 m and cross-sectional area 7.10 cm^2 is insulated to...
A cylindrical copper rod of length 1.60 m and cross-sectional area 7.10 cm^2 is insulated to prevent heat loss through its surface. The ends are maintained at a temperature difference of 100 degrees C by having one end in a water-ice mixture and the other in boiling water and steam. Find the rate at which ice melts at one end (in grams/second).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT