Question

In: Civil Engineering

A closed, rigid tank contains water initially at 250 °F with a quality of 0.4. The...

A closed, rigid tank contains water initially at 250 °F with a quality of 0.4. The tank is heated until the water reaches 290 °F. Find the initial and final pressure, in lbf/in2 . Sketch the process on P-υ and T-υ diagrams (be sure to include the vapor dome, constant temperature and pressure lines, number your states, and indicate the process direction with an arrow). Thermodynamic

Solutions

Expert Solution

Answer:

Given that:

A closed, rigid tank contains water initially at with a quality of 0.4.The tank is heated until the water reaches .

Initiat temperature

x = 0.4

Initially the state at water is liquid-vapour region

at

initial pressure

x = 0.4

as it is rigid tank

at

second state is also liquid vapour region.


Related Solutions

Problem 3.034 A closed, rigid tank is filled with water. Initially, the tank holds 0.4 lb...
Problem 3.034 A closed, rigid tank is filled with water. Initially, the tank holds 0.4 lb of saturated vapor and 4.0 lb of saturated liquid, each at 212°F. The water is heated until the tank contains only saturated vapor. Kinetic and potential energy effects can be ignored.   Determine the volume of the tank, in ft3, the temperature at the final state, in °F, and the heat transfer, in Btu.
A closed rigid tank contains 2 kg of water at 80 C and quality of 0.5815....
A closed rigid tank contains 2 kg of water at 80 C and quality of 0.5815. The tank is then heated until it contains only saturated vapor. How much heat (in kJ) is added to reach this condition? Include a drawing and plot the process on a P-V diagram. Organize the solution as Given and drawing: Assumptions: First Law Analysis: Solution: PV diagram:
A closed, rigid tank is filled with water. Initially, the tank holds 0.6 lb of saturated...
A closed, rigid tank is filled with water. Initially, the tank holds 0.6 lb of saturated vapor and 6.0 lb of saturated liquid, each at 212°F. The water is heated until the tank contains only saturated vapor. Kinetic and potential energy effects can be ignored. Determine the volume of the tank, in ft3, the temperature at the final state, in °F, and the heat transfer, in Btu.
A closed, rigid tank fitted with a paddle wheel contains 2.2 kg of air, initially at...
A closed, rigid tank fitted with a paddle wheel contains 2.2 kg of air, initially at 200oC, 1 bar. During an interval of 20 minutes, the paddle wheel transfers energy to the air at a rate of 1 kW. During this time interval, the air also receives energy by heat transfer at a rate of 0.5 kW. These are the only energy transfers. Assume the ideal gas model for the air, and no overall changes in kinetic or potential energy....
A rigid tank with a volume of 20 litres initially contains water at 0.1 degree of...
A rigid tank with a volume of 20 litres initially contains water at 0.1 degree of dryness and a pressure of 175 KPA. A steam disposal Valve is located at the top of the tank. Adding heat and steam by throwing the final case degree of dryness 0.4 and pressure 150 kPa is desired to be made. How much mass is ejected and what is the entropy produced. Heat source temperature 1000 K.
A rigid tank of volume 0.3 m3 contains water initially at its critical point. The water...
A rigid tank of volume 0.3 m3 contains water initially at its critical point. The water is now cooled to 150°C a) What mass of water is in the tank? b) Has the average specific volume of this water changed during the cooling process? c) Find the mass of liquid water and the mass of water vapor in the tankat the end of the process. d) Find the volume of liquid water and the volume of water vapor in the...
Five lbs of propane is contained in a closed, rigid tank initially at 80 lbf/in.2, 50°F....
Five lbs of propane is contained in a closed, rigid tank initially at 80 lbf/in.2, 50°F. Heat transfer occurs until the final temperature in the tank is 0°F. Kinetic and potential energy effects are negligible. Determine the amount of energy transfer by heat, in Btu.
A closed, rigid tank contains a two-phase liquid–vapor mixture of Refrigerant 22 initially at -20°C with...
A closed, rigid tank contains a two-phase liquid–vapor mixture of Refrigerant 22 initially at -20°C with a quality of 47.50%. Energy transfer by heat into the tank occurs until the refrigerant is at a final pressure of 6 bar. a) Determine the final temperature, in °C. b) If the final state is in the superheated vapor region, at what temperature, in °C, does the tank contain only saturated vapor?
A 200 litre tank initially contains water at 100 kPa and a quality of 1%. Heat...
A 200 litre tank initially contains water at 100 kPa and a quality of 1%. Heat is transferred to the water, thereby raising its pressure and temperature. At a pressure of 2 MPa, a safety valve opens, and saturated vapour at 2 MPa flows out. The process continues, maintaining 2 MPa inside until the quality in the tank is 90%, then stops. Determine the total mass if water that flowed out and the total heat transfer. *I’ve seen others have...
A well-insulated rigid tank contains 3kg of saturated liquid vapour-mixture of water at 250kpa. Initially, three...
A well-insulated rigid tank contains 3kg of saturated liquid vapour-mixture of water at 250kpa. Initially, three quarters of the mass is in the liquid phase. An electric resistance heater placed in the tank is turned on and kept on until all the liquid in the tank is vaporizer. Assuming the surroundings to be 25 degrees Celsius and 100kpa Determine: a) The exergy destruction and b) The second law efficiency for the process.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT