Question

In: Advanced Math

Just (c) from the problem below: 1.11. Let f be a one-to-one smooth map of the...

Just (c) from the problem below:

1.11. Let f be a one-to-one smooth map of the real line to itself. One-to-one means that if f(xi) = f(x2), then x1 = x2. A function f is called increasing if x1 〈 x2 implies

f(x1 )くf(x2), and decreasing if x1 〈 x2 implies f(x1 ) 〉 f(x2 )

(a) Show that f is increasing for all x or f is decreasing for all:x

(b)Show that every orbit {x0, x1, x2…} of f2 satisfies either xo

x1x2… or xox1x2...

(c) Show that every orbit of f2 either diverges to +

or- or converges to a

fixed point of f2.

(d) What does this imply about convergence of the orbits of f?

Solutions

Expert Solution


Related Solutions

Let f: A→B and g:B→C be maps. (A) If f and g are both one-to-one functions,...
Let f: A→B and g:B→C be maps. (A) If f and g are both one-to-one functions, show that g∘f is one-to-one. (B) If g∘f is onto, show that g is onto. (C) If g∘f is one-to-one, show that f is one-to-one. (D) If g∘f is one-to-one and f is onto, show that g is one-to-one. (E) If g∘f is onto and g is one-to-one, show that f is onto. (Abstract Algebra)
Let a < c < b, and let f be defined on [a,b]. Show that f...
Let a < c < b, and let f be defined on [a,b]. Show that f ∈ R[a,b] if and only if f ∈ R[a, c] and f ∈ R[c, b]. Moreover, Integral a,b f = integral a,c f + integral c,b f .
Let A ⊆ R, let f : A → R be a function, and let c...
Let A ⊆ R, let f : A → R be a function, and let c be a limit point of A. Suppose that a student copied down the following definition of the limit of f at c: “we say that limx→c f(x) = L provided that, for all ε > 0, there exists a δ ≥ 0 such that if 0 < |x − c| < δ and x ∈ A, then |f(x) − L| < ε”. What was...
1. Let T : Mn×n(F) → Mn×n(F) be the transposition map, T(A) = At. Compute the...
1. Let T : Mn×n(F) → Mn×n(F) be the transposition map, T(A) = At. Compute the characteristic polynomial of T. You may wish to use the basis of Mn×n(F) consisting of the matrices eij + eji, eij −eji and eii. 2.  Let A = (a b c d) (2 by 2 matrix) and let T : M2×2(F) → M2×2(F) be defined asT (B) = AB. Represent T as a 4×4 matrix using the ordered basis {e11,e21,e12,e22}, and use this matrix to...
Let f be a one-to-one function from A into b with B countable. Prove that A...
Let f be a one-to-one function from A into b with B countable. Prove that A is countable. Section on Cardinality
Let f:A→B and g:B→C be maps. (a) If f and g are both one-to-one functions, show...
Let f:A→B and g:B→C be maps. (a) If f and g are both one-to-one functions, show that g ◦ f is one-to-one. (b) If g◦f is onto, show that g is onto. (c) If g ◦ f is one-to-one, show that f is one-to-one. (d) If g ◦ f is one-to-one and f is onto, show that g is one-to-one. (e) If g ◦ f is onto and g is one-to-one, show that f is onto.
TOPOLOGY Let f : X → Y be a function. Prove that f is one-to-one and...
TOPOLOGY Let f : X → Y be a function. Prove that f is one-to-one and onto if and only if f[A^c] = (f[A])^c for every subset A of X. (prove both directions)
Let l:ax1+bx2 =c be a line where a^2+b^2 =1.Find the map f: R^2 →R^2 that represents...
Let l:ax1+bx2 =c be a line where a^2+b^2 =1.Find the map f: R^2 →R^2 that represents the reflection about l. Verify that the transformation f found in Problem 1 is an isometry.
Let f: X→Y be a map with A1, A2⊂X and B1,B2⊂Y (A) Prove f(A1∪A2)=f(A1)∪f(A2). (B) Prove...
Let f: X→Y be a map with A1, A2⊂X and B1,B2⊂Y (A) Prove f(A1∪A2)=f(A1)∪f(A2). (B) Prove f(A1∩A2)⊂f(A1)∩f(A2). Give an example in which equality fails. (C) Prove f−1(B1∪B2)=f−1(B1)∪f−1(B2), where f−1(B)={x∈X: f(x)∈B}. (D) Prove f−1(B1∩B2)=f−1(B1)∩f−1(B2). (E) Prove f−1(Y∖B1)=X∖f−1(B1). (Abstract Algebra)
In Drosophila, the map positions of genes are given in map units numbering from one end...
In Drosophila, the map positions of genes are given in map units numbering from one end of a chromosome to the other. The X chromosome of Drosophila is 66 m.u.. long. The X-linked gene for body color-with two alleles, y +for gray body and y for yellow body-resides at one end of the chromosome at map position 0.0. A nearby locus for eye color, with alleles w +for red eye and w for white eye, is located at map position...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT