In: Chemistry
The Cu2MnAl alloy is ferromagnetic even though Mn itself is not. The Mn-Mn distance in this alloy is larger than for Mn metal. What effect does this have on the 3d band of Mn and therefore, why is this alloy ferromagnetic?
The paper was attempted to the process control of phase formation at the aging of high-temperature phase using a constant magnetic field with the strength of 1.5 kOe in order to optimize the parameters of martensite transformation behavior in Cu-Al-Mn alloy. With the help of the phenomenological theory of diffusion decay and obtained experimental results, the behavior of induced MT in Cu-Al-Mn alloy was explained and its causes were found out. One can assume that applying a magnetic field stimulates the formation of ferromagnetic nanoparticles during the decay of solid solution. In addition, thermomagnetic treatment helps to create effective nucleation centers of nanoparticles in Cu-Al-Mn alloy during the aging of high-temperature phase.
Thus, annealing in a magnetic field promotes the increasing of ferromagnetic nanoparticles number in the nonferromagnetic matrix, as evidenced by measuring the magnetic properties of the material sample, such as field dependences of magnetization and low-field magnetic susceptibility.