In: Statistics and Probability
Use the information about each of the following samples to
compute the confidence interval to estimate p.
a. n = 44 and p? = 0.50; compute a 99%
confidence interval.
b. n = 300 and p? = 0.80; compute a 95%
confidence interval.
c. n = 1,150 and p? = 0.40; compute a 90%
confidence interval.
d. n = 95 and p? = 0.30; compute a 95%
confidence interval.
Solution :
Given that,
a.
n = 44
point estimate = sample proportion = = 0.50
1 - = 1 - 0.50 = 0.5
At 99% confidence level the z is ,
= 1 - 99% = 1 - 0.99 = 0.01
/ 2 = 0.01 / 2 = 0.005
Z/2 = Z0.005 = 2.576
Margin of error = E = Z / 2 * (( * (1 - )) / n)
= 2.576 * (((0.50 * 0.5) / 44)
= 0.194
A 99% confidence interval for population proportion p is ,
- E < p < + E
0.50 - 0.194 < p < 0.50 + 0.194
0.306 < p < 0.694
The 99% confidence interval for the population proportion p is : 0.306 , 0.694
b.
n = 300
Point estimate = sample proportion = = 0.80
1 - = 1 - 0.80 = 0.2
At 95% confidence level the z is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
Z/2 = Z0.025 = 1.96
Margin of error = E = Z / 2 * (( * (1 - )) / n)
= 1.96 * (((0.80 * 0.2) / 300)
= 0.045
A 95% confidence interval for population proportion p is ,
- E < p < + E
0.80 - 0.045 < p < 0.80 + 0.045
0.755 < p < 0.845
The 95% confidence interval for the population proportion p is : 0.755 , 0.845
c.
n = 1150
point estimate = sample proportion = = 0.40
1 - = 1 - 0.40 = 0.6
At 90% confidence level the z is ,
= 1 - 90% = 1 - 0.90 = 0.10
/ 2 = 0.10 / 2 = 0.05
Z/2 = Z0.05 = 1.645
Margin of error = E = Z / 2 * (( * (1 - )) / n)
= 1.645 * (((0.40 * 0.6) / 1150)
= 0.024
A 90% confidence interval for population proportion p is ,
- E < p < + E
0.40 - 0.024 < p < 0.40 + 0.024
0.376 < p < 0.424
The 90% confidence interval for the population proportion p is : 0.376 , 0.424
d.
n = 95
Point estimate = sample proportion = = 0.30
1 - = 1 - 0.30 = 0.7
At 95% confidence level the z is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
Z/2 = Z0.025 = 1.96
Margin of error = E = Z / 2 * (( * (1 - )) / n)
= 1.96 * (((0.30 * 0.7) / 95)
= 0.092
A 95% confidence interval for population proportion p is ,
- E < p < + E
0.30 - 0.092 < p < 0.30 + 0.092
0.208 < p < 0.392
The 95% confidence interval for the population proportion p is : 0.208 , 0.392