Question

In: Chemistry

The reaction shown was studied in the gas phase observing the change in pressure as a...

The reaction shown was studied in the gas phase observing the change in pressure as a function of time. Given the data below, determine the order of the reaction.

ClC(O2)CCl3= 2COCl2

TIME (sec) 0 181 513 1164
P (mmHg) 15.76 18.88 22.79 27.08

Solutions

Expert Solution

The best way to identify fast and easy the rate of reaction AND the rate constant is via Graphical Method.

First, as the name implies, we need to graph all types of order (most common)

Zero = C vs t;

For zero order, there is no dependency of concentrations:

dC/dt = k*C^0

dC/dt = k

When developed:

C = C0 - kt

if x axis is "time" then the slope is "k", and y-intercept is initial concentration C0. y-axis if C (concentration)

First = ln(C) vs. t

For first order

dC/dt = k*C^1

dC/dt = k*C

When developed:

dC/C = k*dt

ln(C) = ln(C0) - kt

if x axis is "time" then the slope is "-k", and y-intercept is initial concentration C0. y-axis if ln(C) (natural logarithm of concentration)

Second = 1/C vs. t

For Second order

dC/dt = k*C^2

When developed:

dC/C^2 = k*dt

1/C= 1/C0 + kt

if x axis is "time" then the slope is "k", and y-intercept is initial concentration C0. y-axis if 1/(C (inverse of concentration)

Know, graph all data in the 3 graphical methods

Best fit is zero order


Related Solutions

A gas phase reaction takes place in a syringe at a constant temperature and pressure. If...
A gas phase reaction takes place in a syringe at a constant temperature and pressure. If the initial volume before reaction is 60 mL and the final volume after the reaction is complete is 40 mL, which of the following reactions took place. (Note: You can assume that you start with stoichiometric amounts of the reactants, the reaction goes to completion and that the gases behave ideally.) 2NO(g) + O2(g)->2NO2(g) 2NO2(g)->N2O4(g) 2NOBr(g)->2NO(g) + Br2(g) 2N2O5(g)->2N2O4(g) + O2(g) 2N2O5(g)->4NO2(g) + O2(g)
Consider the gas phase reversible reaction 2A ↔ B that occurs at atmospheric pressure. a) If...
Consider the gas phase reversible reaction 2A ↔ B that occurs at atmospheric pressure. a) If the equilibrium constant Ka = 0.1, what are the equilibrium mole fractions of A and B? b) Assuming the reaction is elementary, write the rate law using kA and k-A as the forward and reverse rate constants, respectively. What is the equilibrium constant Kc in terms of kA and k-A? Assuming an ideal gas system, write an expression for Ka in terms of kA...
in the gas-phase reaction A + B --> C + 2D, it was found that when...
in the gas-phase reaction A + B --> C + 2D, it was found that when 2 mole A, 1 mole B, and 3 mole D were mixed and allowed to come to equilibrium at 25oC, the resulting mixture contained 0.79 mole C at a total pressure of 1 bar. calculate (a) the mole fractions of each species at equilibrium, (b) Kx (c) K and (d) deltarGo
Dinitrogen pentoxide decomposes in the gas phase to form nitrogen dioxide and oxygen gas. The reaction...
Dinitrogen pentoxide decomposes in the gas phase to form nitrogen dioxide and oxygen gas. The reaction is first order in dinitrogen pentoxide and has a half-life of 2.81 h at 25 ∘C. If a 1.5-L reaction vessel initially contains 760 torr of N2O5 at 25 ∘C, what partial pressure of O2 is present in the vessel after 225 minutes?
Dinitrogen pentoxide decomposes in the gas phase to form nitrogen dioxide and oxygen gas. The reaction...
Dinitrogen pentoxide decomposes in the gas phase to form nitrogen dioxide and oxygen gas. The reaction is first order in dinitrogen pentoxide and has a half-life of 2.81 h at 25 ∘C. If a 1.7-L reaction vessel initially contains 760 torr of N2O5 at 25 ∘C, what partial pressure of O2 is present in the vessel after 205 minutes?
In the reaction of gaseous N2O5 to yield NO2 gas and O2 gas as shown below...
In the reaction of gaseous N2O5 to yield NO2 gas and O2 gas as shown below the following data table is obtained: 2 N2O5 (g) → 4 NO2 (g) + O2 (g) Data Table #1 Time (sec) [N2O5] [O2] 0 0.200 M 0 300 0.182 M 0.009 M 600 0.166 M 0.017 M 900 0.152 M 0.024 M 1200 0.140 M 0.030 M 1800 0.122 M 0.039 M 2400 0.112 M 0.044 M 3000 0.108 M 0.046 M Complete the...
Assume that the mechanism for the gas phase reaction, 2 NO + O2 = 2 NO2,...
Assume that the mechanism for the gas phase reaction, 2 NO + O2 = 2 NO2, consists of the following elementary steps. FYI, NO and NO2 have an unpaired electron on the nitrogen atom. In NO3 an unpaired electron is on one of the oxygen atoms. (1) NO + O2 ↔ NO3 (rate coefficients k1 and k-1) (2) NO3 + NO → 2 NO2 (rate coefficient k2) (i)Complete the following expressions with rates of the elementary steps, derive an expression...
The elementary irreversible gas phase reaction A --> B + C is carried out in a...
The elementary irreversible gas phase reaction A --> B + C is carried out in a PFR packed with catalyst. Pure A enters the reactor at a volumetric flowrate of 20 dm3 /s at a pressure of 10 atm and 450K. CpA=40 J/mol.K HfA=-70 kJ/mol   (TR=273 K) CpB=25 J/mol.K HfB=-50 kJ/mol CpC=15 J/mol.K HfC=-40 kJ/mol k = 0.133 exp ( E/R*[ 1/450 ? 1/T ] ) dm3 kg cat. s with E = 31.4 kJ/mol a) Plot the conversion and...
The elementary irreversible gas phase reaction A --> B + C is carried out in a...
The elementary irreversible gas phase reaction A --> B + C is carried out in a PFR packed with catalyst. Pure A enters the reactor at a volumetric flowrate of 20 dm3 /s at a pressure of 10 atm and 450K. Consider that the heat is removed by a heat exchanger jacketing the reactor. The flowrate of coolant through the jacket is sufficiently high so that the ambient exchanger temperature is constant at 50oC. CpA=40 J/mol.K HfA=-70 kJ/mol CpB=25 J/mol.K...
The elementary irreversible gas phase reaction A --> B + C is carried out in a...
The elementary irreversible gas phase reaction A --> B + C is carried out in a PFR packed with catalyst. Pure A enters the reactor at a volumetric flowrate of 20 dm3 /s at a pressure of 10 atm and 450K. Consider that the heat is removed by a heat exchanger jacketing the reactor. The flowrate of coolant through the jacket is sufficiently high so that the ambient exchanger temperature is constant at 50oC. CpA=40 J/mol.K HfA=-70 kJ/mol CpB=25 J/mol.K...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT