In: Statistics and Probability
Consider the following data for two variables, x and y.
x | 10 | 34 | 20 | 11 | 24 |
y | 11 | 30 | 22 | 19 | 21 |
a. Develop an estimated regression equation for the data of the form y=b0+b1x. Comment on the adequacy of this equation for predicting . Enter negative value as negative number.
The regression equation is | ||||||||||||||||||||||||
Y=___________+___________ (to 2 decimals) | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
Analysis of Variance | ||||||||||||||||||||||||
|
Using a .05 significance level, the p-value indicates a (- Select your answer -weak, strong or no relationship); note that ______________ (to 1 decimal) of the variability in y has been explained by x.
b. Develop an estimated regression equation for the data of the form y=b0+b1x+b2x2 . Comment on the adequacy of this equation for predicting y. Enter negative value as negative number. If your answer is zero, enter "0".
The regression equation is | ||||||||||||||||||||||||
y=_________+__________X+_________x2 (to 2 decimals) | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
Analysis of Variance | ||||||||||||||||||||||||
|
At the a= .05 level of significance, the relationship (- Select your answer - is, is not) _______________ (to 1 decimal) of the variability in y has been explained by x.
c.Using the appropriate regression model, predict the value of y when x=2.
_______________ (to 2 decimals)
a)
using excel data analysis tool for regression
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.903173 | |||||||
R Square | 0.815722 | |||||||
Adjusted R Square | 0.754296 | |||||||
Standard Error | 3.372848 | |||||||
Observations | 5 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 151.0717 | 151.0717 | 13.27974 | 0.035638 | |||
Residual | 3 | 34.12831 | 11.3761 | |||||
Total | 4 | 185.2 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 8.320774 | 3.69179 | 2.253859 | 0.109546 | -3.42815 | 20.0697 | -3.42815 | 20.0697 |
X | 0.620163 | 0.170181 | 3.644138 | 0.035638 | 0.078571 | 1.161755 | 0.078571 | 1.161755 |
so, regression line is Ŷ = 8.32 + 0.62 *x
s=3.373
R²=81.6%
R² adj = 75.4%
ANOVA | |||||
df | SS | MS | F | p-value | |
Regression | 1 | 151.072 | 151.072 | 13.28 | 0.0356 |
Residual | 3 | 34.128 | 11.376 | ||
Total | 4 | 185.200 |
Using a .05 significance level, the p-value indicates a (, strong relationship) ; note that _____81.6%_________ (to 1 decimal) of the variability in y has been explained by x.
-----------------------------------------------------------------------------------------------------------
b)
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.903417 | |||||||
R Square | 0.816162 | |||||||
Adjusted R Square | 0.632324 | |||||||
Standard Error | 4.125944 | |||||||
Observations | 5 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 2 | 151.1532 | 75.57659 | 4.439568 | 0.183838 | |||
Residual | 2 | 34.04682 | 17.02341 | |||||
Total | 4 | 185.2 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 9.070045 | 11.7337 | 0.772991 | 0.520382 | -41.416 | 59.5561 | -41.416 | 59.5561 |
X | 0.535426 | 1.242336 | 0.430983 | 0.708485 | -4.80991 | 5.880767 | -4.80991 | 5.880767 |
X² | 0.001973 | 0.028518 | 0.069186 | 0.951137 | -0.12073 | 0.124677 | -0.12073 | 0.124677 |
Y = 9.07 + 0.54*X + 0.00*X²
s=4.126
R²=81.6%
R² adj = 63.2%
ANOVA | |||||
df | SS | MS | F | p-value | |
Regression | 2 | 151.153 | 75.577 | 4.44 | 0.1838 |
Residual | 2 | 34.047 | 17.023 | ||
Total | 4 | 185.200 |
At the a= .05 level of significance, the relationship is not . ______81.6%_________ (to 1 decimal) of the variability in y has been explained by x
----------------------------------------------
c)
first model is appropriate
so, when x=2
Ŷ = 8.3208 + 0.6202 *2 = 9.56