Question

In: Statistics and Probability

Generate and provide the full regression output using x1, x2, their squared terms, and their interaction, as 'x' variables against the 'y' variable.

X1 X2 Y
10 3 2002
5 14 1747
8 4 1980
7 4 1902
6 7 1842
7 6 1883
4 21 1697
11 4 2021
5 12 1750
6 8 1832
5 18 1795
7 4 1917
8 5 1943
6 9 1830
5 12 1786

A.

Generate and provide the full regression output using x1, x2, their squared terms, and their interaction, as 'x' variables against the 'y' variable.

Solutions

Expert Solution


Related Solutions

Using Excel generate a simple regression model with Y as the dependent variable and X1 and...
Using Excel generate a simple regression model with Y as the dependent variable and X1 and X2 as the independent variables in the attached spreadsheet. Write the following from the output: Intercept: Coefficients of Independent variable: R-square: Significance F: Based on the model generated, forecast profits for a firm with X1= Based on the model generated, forecast profits for a firm with x1=250 and X2=100. Evaluate the predictability of the model using explanatory language that someone who does not have...
Consider the following data for a dependent variable y and two independent variables, x2 and x1....
Consider the following data for a dependent variable y and two independent variables, x2 and x1. x1 x2 y 30 12 94 46 10 109 24 17 113 50 17 179 41 5 94 51 19 175 75 8 171 36 12 118 59 13 143 77 17 212 Round your all answers to two decimal places. Enter negative values as negative numbers, if necessary. a. Develop an estimated regression equation relating y to x1 . Predict y if x1=45....
Consider the following data for a dependent variable y and two independent variables, x1 and x2.
You may need to use the appropriate technology to answer this question. Consider the following data for a dependent variable y and two independent variables, x1 and x2. x1 x2 y 30 12 93 47 10 108 25 17 112 51 16 178 40 5 94 51 19 175 74 7 170 36 12 117 59 13 142 76 16 211 The estimated regression equation for these data is ŷ = −18.89 + 2.02x1 + 4.74x2. Here, SST = 15,276.0,...
Use the dependent variable (labeled Y) and one of the independent variables (labeled X1, X2, and...
Use the dependent variable (labeled Y) and one of the independent variables (labeled X1, X2, and X3) in the data file. Select and use one independent variable throughout this analysis. Use Excel to perform the regression and correlation analysis to answer the following. Generate a scatterplot for the specified dependent variable (Y) and the selected independent variable (X), including the graph of the "best fit" line. Interpret. Determine the equation of the "best fit" line, which describes the relationship between...
Use the dependent variable (labeled Y) and one of the independent variables (labeled X1, X2, and...
Use the dependent variable (labeled Y) and one of the independent variables (labeled X1, X2, and X3) in the data file. Select and use one independent variable throughout this analysis. Use Excel to perform the regression and correlation analysis to answer the following. The week 6 spreadsheet can be helpful in this work. 1. Generate a scatterplot for the specified dependent variable (Y) and the selected independent variable (X), including the graph of the "best fit" line. Interpret. 2 Determine...
Ten observations on the response variable y associated with two regressor variables x1 and x2 are...
Ten observations on the response variable y associated with two regressor variables x1 and x2 are given in the following table. The model fitted to these observations is yi = β 0 + β 1x1i + β 2x2i + εi , i = 1, …, n , (3) where ε’s are identically and independently distributed as a normal random variable with mean zero and a known variance σ ^2 = 3. Observation # y x1 x2 1 7 9 1...
Consider the following data for a dependent variable y and two independent variables, x1 and x2....
Consider the following data for a dependent variable y and two independent variables, x1 and x2. x1 x2 y 30 12 94 47 10 108 25 17 112 51 16 178 40 5 94 51 19 175 74 7 170 36 12 117 59 13 142 76 16 209 The estimated regression equation for these data is ŷ = −17.02 + 1.99x1 + 4.70x2. Here, SST = 14,902.9, SSR = 13,773.1, sb1 = 0.2470, and sb2 = 0.9480. (1a) Test...
Consider the following data for a dependent variable y and two independent variables, x1 and x2....
Consider the following data for a dependent variable y and two independent variables, x1 and x2. x1 x2 y 30 13 95 46 10 108 25 18 113 50 16 179 40 5 95 51 20 176 74 7 170 36 12 117 59 13 142 77 16 211 Round your all answers to two decimal places. Enter negative values as negative numbers, if necessary. a. Develop an estimated regression equation relating y to x1. ŷ =_________ +___________ x1 Predict...
Consider the following data for a dependent variable y and two independent variables, x1 and x2....
Consider the following data for a dependent variable y and two independent variables, x1 and x2. x1 x2 y 30 12 95 47 10 108 25 17 112 51 16 178 40 5 94 51 19 175 74 7 170 36 12 117 59 13 142 76 16 212 The estimated regression equation for these data is ŷ = −18.52 + 2.01x1 + 4.75x2. Here, SST = 15,234.1, SSR = 14,109.8, sb1 = 0.2464, and sb2 = 0.9457. (a)Test for...
Consider a binary response variable y and two explanatory variables x1 and x2. The following table...
Consider a binary response variable y and two explanatory variables x1 and x2. The following table contains the parameter estimates of the linear probability model (LPM) and the logit model, with the associated p-values shown in parentheses. Variable LPM Logit Constant −0.40 −2.20 (0.03 ) (0.01 ) x1 0.32 0.98 (0.04 ) (0.06 ) x2 −0.04 −0.20 (0.01 ) (0.01 ) a. At the 5% significance level, comment on the significance of the variables for both models. Variable LPM Logit...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT