Question

In: Chemistry

2 h2s(l) ⇌ 2h2(g) + s2(g) (Kc at 700c is 9.30x10^-8) A) Write the equilibrium expression...

2 h2s(l) ⇌ 2h2(g) + s2(g) (Kc at 700c is 9.30x10^-8)

A) Write the equilibrium expression for this reaction

B) If 0.45 mol of H2S gas is placed in a 3 L container at 700C what is the concentration, in mol/L, of hydrogen gas when equilibrium is reached.

Solutions

Expert Solution

A ) equilibrium expression Kc = [H2]^2 [S2]

     pure liquid doesnot take in the part of equilibrium expression

B)

molarity of H2S = 0.45 / 3 = 0.15 M

2H2S (l) <---------------------> 2H2 (g) + S2 (g)

0.15                                          0              0      ---------------> iniitla

0.15-2x                                    2x               x ------------------> equilibrium

Kc = [H2]^2 [S2]

Kc = (2x)^2 (x)

Kc = 4 x^3

9.30 x 10^-8 = 4 x^3

x = 2.85 x 10^-3

equilibrium concentrations :

hydrogen equilibrium concentration = 2x = 5.71 x 10^-3 M

sulfur equilibrium concentration = x = 2.85 x 10^-3 M


Related Solutions

The reaction 2H2S(g)⇌2H2(g)+S2(g) Kc=1.67×10−7 at 800∘C is carried out with the following initial concentrations: [H2S] =...
The reaction 2H2S(g)⇌2H2(g)+S2(g) Kc=1.67×10−7 at 800∘C is carried out with the following initial concentrations: [H2S] = 0.150 M , [H2] =0.375 M , and [S2] = 0.00 M. Find the equilibrium concentration of  [S2].
In the balanced equilibrium reaction: 2 H2S <----> S2 + 2 H2, with K = 3.7...
In the balanced equilibrium reaction: 2 H2S <----> S2 + 2 H2, with K = 3.7 x 10-6, if the initial concentration of H2S is 0.080 M, what is the final concentration of H2?
Consider the reaction for the decomposition of hydrogen disulfide: 2H2S(g)⇌2H2(g)+S2(g), Kc = 1.67×10−7 at 800∘C A...
Consider the reaction for the decomposition of hydrogen disulfide: 2H2S(g)⇌2H2(g)+S2(g), Kc = 1.67×10−7 at 800∘C A 0.500 L reaction vessel initially contains 5.00×10−2 mol of H2S and 8.75×10−2 mol of H2 at 800∘C. Find the equilibrium concentration of [S2].
8. The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇌ 2 HBr(g) is 2.18×106...
8. The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇌ 2 HBr(g) is 2.18×106 at 730°C. Starting 3.20 moles of HBr in a 12.0-L reaction vessel, calculate the concentrations of H2, Br2, and HBr at equilibrium. the answer is [H2] = [Br2] = 1.81×10-4 M [HBr] = 0.267 M but how and why?
Part A The reaction 2H2S(g)⇌2H2(g)+S2(g), Kc=1.67×10−7, at 800∘C is carried out with the following initial concentrations:...
Part A The reaction 2H2S(g)⇌2H2(g)+S2(g), Kc=1.67×10−7, at 800∘C is carried out with the following initial concentrations: [H2S] = 0.150 M , [H2] =0.200 M , and [S2] = 0.000 M. Find the equilibrium [S2]. Express your answer with the appropriate units.
Consider the reaction for the decomposition of hydrogen disulfide: 2H2S(g)⇌2H2(g)+S2(g),  Kc=1.67×10−7 at 800∘C The reaction is carried...
Consider the reaction for the decomposition of hydrogen disulfide: 2H2S(g)⇌2H2(g)+S2(g),  Kc=1.67×10−7 at 800∘C The reaction is carried out at the same temperature with the following initial concentrations: [H2S][H2][S2]===4.50×10−4M0.00M0.00M Find the equilibrium concentration of S2.
Given the following equilibrium: Br2 (g) + F2 (g) <----> 2 BrF (g) Kc = 54.7...
Given the following equilibrium: Br2 (g) + F2 (g) <----> 2 BrF (g) Kc = 54.7 at 300 K An evacuated flask is charged with 2.2 atm of Br2 and 2.2 atm of F2 at 300 K. Calculate the partial pressure of BrF at equilibrium at this temperature.
2H2S (g) = 2H2 (g) + S2 (g) When heated hydrogen sulfide gas decomposes according to...
2H2S (g) = 2H2 (g) + S2 (g) When heated hydrogen sulfide gas decomposes according to the equation above. A 3.40g smple of H2S(g) is introduced into an evacuated rigid 1.25 L container. The sealed container is heated to 483 K, and 3.72 x10-2 mol of S2 (g) is present at equilibrium. a) Write the expression for the equilibrium constant, Kc for the decomposition reaction represented above. b) Calculate the equilibrium concentration in M of H2 (g) and H2S (g)...
The reaction CH4(g) + 2 H2S(g) ↔ CS2(g) + 4 H2(g) has an equilibrium constant of...
The reaction CH4(g) + 2 H2S(g) ↔ CS2(g) + 4 H2(g) has an equilibrium constant of 2.73 at a specific temperature. The initial concentrations of the reactants and products are [CH4] = [CS2] = 0.200 M and [H2S] = [H2] = 0.600 M. What is the equilibrium concentration of the H2 if, at equilibrium, [CH4] = 0.150 M?
The equilibrium constant Kc for the reaction H2(g) + I2(g) ⇌ 2 HI(g) is 54.3 at 430 ℃
                    The equilibrium constant Kc for the reaction H2(g) + I2(g) ⇌ 2 HI(g) is 54.3 at 430 ℃   Calculate the equilibrium concentrations of H2, I2, and HI at 430 ℃   if the initial concentrations are [H2] = [I2] = 0.222 M and [HI] = 0 M.[H2]eq = M[I2]eq = M[HI]eq = M
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT