Question

In: Civil Engineering

A 30 ft long beam (W24x68) supports a 5 kips/ft uniformly distributed live. Loading due to...

A 30 ft long beam (W24x68) supports a 5 kips/ft uniformly distributed live. Loading due to self-weight of the beam is negligible, The beam is laterally supported at its ends and at third points. What is the flexural strength (kip/ft) of the section based on lateral torsional buckling (FLB)  failure mode?


units should be in kip/ft

Solutions

Expert Solution


Related Solutions

Design for flexure a beam 12 ft in length, having a uniformly distributed dead load of...
Design for flexure a beam 12 ft in length, having a uniformly distributed dead load of 1 kip/ft, a uniformly distributed live load of 1 kip/ft, and a concentrated dead load of 8.4 kips a distance of 5 ft from one support Show all the steps. (LRFD) Fy = 50k/in2    E = 29,000k/in2
A 40 ft simple span beam is loaded with a uniform dead load of 2.4 kips/ft...
A 40 ft simple span beam is loaded with a uniform dead load of 2.4 kips/ft plus the beam self-weight and a uniform live load of 3.3 kips/ft. The lateral supports are located at the supports and at the midpoint of the span. Determine the leastweight W-shape to carry the load. Use A992 steel and Cb= 1.0. Design by (a) LRFD and (b) ASD. [6.16-36]
Consider a W30x99 beam (Fy = 60 ksi) that is simply supported, 30 ft. long, and...
Consider a W30x99 beam (Fy = 60 ksi) that is simply supported, 30 ft. long, and subjected to a point load at the midspan. The point service load consists of 60% live load and 40% dead load. Lateral supports exist at the ends only. Design code to comply with: 2016 AISC LRFD. (a) Determine the maximum point service load P for strong-axis bending assuming Cb = 1.0. (b) Redetermine the maximum point service load P for strong-axis bending considering proper...
A simply supported beam 10-m long is acted upon by a uniformly distributed dead load of...
A simply supported beam 10-m long is acted upon by a uniformly distributed dead load of 20 kN/m and a uniformly distributed live load of 48 kN/m throughout its span. Design the footings of each columns located at the supports using the following data Depth of Footing (Df)                                                   =             1.20 meters Allowable Soil Pressure (qall)                                      =             210 kPa Unit Weight of Soil (γs)                                                =             17 kN/m3 Unit Weight of Concrete (γc)                                      =             24 kN/m3 Design Compressive Strength of Concrete (f’c)     =             27.6 MPa Yield Strength of Reinforcing Steel (fy)                    =             276 MPa...
(1) A simply supported steel beam is 30' long and subjected to a uniform distributed 1.3...
(1) A simply supported steel beam is 30' long and subjected to a uniform distributed 1.3 kips per foot. What is the minimum required section modulus for this beam if we do not want its maximum stress to exceed 50 ksi? (2) What is the minimum inertia of the beam in the previous question if we do not want it to deflect more than 1/2" ?
A 16-ft long pin-pin column has to support a dead load of 100 kips and a...
A 16-ft long pin-pin column has to support a dead load of 100 kips and a live load of 280 kips. Using column selection tables from the Steel Manual select columns for the given shapes. All selections should be structurally safe and least weight. 50-ksi W-section (W10, 12, 14 only) 35-ksi pipe (standard, x-strong, xx-strong) 46-ksi rectangular HSS 46-ksi square HSS 42-ksi round HSS
A 16-ft long pin-pin column has to support a dead load of 100 kips and a...
A 16-ft long pin-pin column has to support a dead load of 100 kips and a live load of 280 kips. Using column selection tables from the Steel Manual select columns for the given shapes. All selections should be structurally safe and least weight. 50-ksi W-section (W10, 12, 14 only) 35-ksi pipe (standard, x-strong, xx-strong) 46-ksi rectangular HSS 46-ksi square HSS 42-ksi round HSS
Q6: A cantilever beam having span ‘L’ m was subjected to a uniformly distributed load of...
Q6: A cantilever beam having span ‘L’ m was subjected to a uniformly distributed load of magnitude 8 kN/m for a distance of ‘0.6 L’ from the free end and two concentrated loads one of magnitude 15 kN at a distance ‘0.25 L’ m from the free end while the other of magnitude ‘22’ kN at a distance ‘0.6 L’ m from the free end respectively. It was observed that the maximum bending moment acting on the beam is equal...
Q1: A cantilever beam having span ‘L’ m was subjected to a uniformly distributed load of...
Q1: A cantilever beam having span ‘L’ m was subjected to a uniformly distributed load of magnitude 8 kN/m for a distance of ‘0.6 L’ from the free end and two concentrated loads one of magnitude 15 kN at a distance ‘0.25 L’ m from the free end while the other of magnitude ‘22’ kN at a distance ‘0.6 L’ m from the free end respectively. It was observed that the maximum bending moment acting on the beam is equal...
A rectangular swimming pool is 5 ft deep, 10 ft wide, and 15 ft long. The...
A rectangular swimming pool is 5 ft deep, 10 ft wide, and 15 ft long. The pool is filled with water to 1 ft below the top.  If the weight density of water is 62.4 lb / ft3 and if x = 0 corresponds to the bottom of the tank, then which of the following represents the work done (in ft-lb) in pumping all the water into a drain at the top edge of the pool?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT