Question

In: Chemistry

A 120.0 mL buffer solution is 0.110 molL−1 in NH3 and 0.135 molL−1 in NH4Br. If...

A 120.0 mL buffer solution is 0.110 molL−1 in NH3 and 0.135 molL−1 in NH4Br. If the same volume of the buffer were 0.255 molL−1 in NH3 and 0.400 molL−1 in NH4Br, what mass of HCl could be handled before the pH fell below 9.00?

the answer is not 0.084g!

Solutions

Expert Solution

When the pH fell below 9.00
pOH = 14-9.00
= 5.00
henderson hasselbalch.

pOH= pKb+log([NH₄⁺]/[NH₃])

5.00-4.745 = log([NH₄⁺]/[NH₃])

[NH₄⁺]/[NH₃]= 10^(5.00-4.745) = 1.8

moles of NH₄⁺/moles of NH₃= 1.8

The chemical reaction is

NH₃(aq)+HCl(aq)→NH₄Cl(aq)

Let x be the number of moles of HCl added.

moles of NH₃ = ([NH₃])(volume of buffer solution in L)
= (0.255)(120x10⁻³)
= 0.0306

moles of NH₄⁺ = ([NH₄⁺])(volume of buffer solution in L)
= (0.4)(120x10⁻³)
= 0.048

From the stoichiometry of the reaction 1 mol of NH3 reacts with 1 mol of HCl and produces 1 mol of NH4Cl

moles of NH₃ remaining after the reaction
= 0.0306-x
moles of NH₄⁺ present after the reaction
= (initial moles of NH₄⁺)+( moles of HCl added)
= 0.048+x

(0.048+x)/(0.0306-x)= 1.8

0.048+x = 0.05508 - 1.8 x
2.8x= 0.00708
x = 0.00253 = moles of HCl added
Molecular weight of HCl =  36.5 g/mol

Mass of HCl = moles x molecular weight

= 0.00253 moles x 36.5 g/mol = 0.092345 g

if more HCl added to solution than 0.092345 g then its pH would fall below 9.00.


Related Solutions

A 110.0 mL buffer solution is 0.110 molL−1 in NH3 and 0.125 molL−1 in NH4Br. (A)...
A 110.0 mL buffer solution is 0.110 molL−1 in NH3 and 0.125 molL−1 in NH4Br. (A) What mass of HCl will this buffer neutralize before the pH falls below 9.00? (Kb(NH3)=1.8×10−5)? (B) If the same volume of the buffer were 0.265 molL−1 in NH3 and 0.390 molL−1 in NH4Br, what mass of HCl could be handled before the pH fell below 9.00?
A 130.0 mL buffer solution is 0.105 molL−1 in NH3 and 0.135 molL−1 in NH4Br. What...
A 130.0 mL buffer solution is 0.105 molL−1 in NH3 and 0.135 molL−1 in NH4Br. What mass of HCl will this buffer neutralize before the pH falls below 9.00? (Kb(NH3)=1.8×10−5). If the same volume of the buffer were 0.270 molL−1 in NH3 and 0.400 molL−1 in NH4Br, what mass of HCl could be handled before the pH fell below 9.00.
A 110.0 mL buffer solution is 0.110 molL−1 in NH3 and 0.125 molL−1 in NH4Br. Part...
A 110.0 mL buffer solution is 0.110 molL−1 in NH3 and 0.125 molL−1 in NH4Br. Part A (PLEASE ANSWER EVERY PART CORRECTLY :)) What mass of HCl will this buffer neutralize before the pH falls below 9.00? (Kb(NH3)=1.76×10−5 Express your answer using two significant figures. mm = g Part B If the same volume of the buffer were 0.265 molL−1 in NH3 and 0.390 molL−1 in NH4Br, what mass of HCl could be handled before the pH fell below 9.00?...
#6. A 130.0 mL buffer solution is 0.110 molL−1 in NH3 and 0.125 molL−1 in NH4Br....
#6. A 130.0 mL buffer solution is 0.110 molL−1 in NH3 and 0.125 molL−1 in NH4Br. A) What mass of HCl will this buffer neutralize before the pH falls below 9.00? (Kb(NH3)=1.76×10−5) B)If the same volume of the buffer were 0.270 molL−1 in NH3 and 0.390 molL−1 in NH4Br, what mass of HCl could be handled before the pH fell below 9.00?
A 130.0 mL buffer solution is 0.110 M in NH3 and 0.135 M in NH4Br. (Kb...
A 130.0 mL buffer solution is 0.110 M in NH3 and 0.135 M in NH4Br. (Kb of NH3 is 1.76×10−5.) a.)What mass of HCl can this buffer neutralize before the pH falls below 9.00? b.)If the same volume of the buffer were 0.255 M in NH3 and 0.400 M in NH4Br, what mass of HCl could be handled before the pH falls below 9.00?
A 130.0 mL buffer solution is 0.110 M in NH3 and 0.135 M in NH4Br. (Kb...
A 130.0 mL buffer solution is 0.110 M in NH3 and 0.135 M in NH4Br. (Kb of NH3 is 1.76×10−5.) a.)What mass of HCl can this buffer neutralize before the pH falls below 9.00? I already did this and got 0.101 g, which is right, but I am struggling to answer Part B. b.)If the same volume of the buffer were 0.255 M in NH3 and 0.400 M in NH4Br, what mass of HCl could be handled before the pH...
A 130.0 mL buffer solution is 0.110 M in NH3 and 0.135 M in NH4Br. (Kb...
A 130.0 mL buffer solution is 0.110 M in NH3 and 0.135 M in NH4Br. (Kb of NH3 is 1.76×10−5.) If the same volume of the buffer were 0.255 M in NH3 and 0.400 M in NH4Br, what mass of HCl could be handled before the pH falls below 9.00? Please help me figure out the answer! I am on my last attempt. I have entered the following answers and these are NOT correct: 0.0916, 0.0915, 0.094, 0.101, 0.999, 0.0999,...
A 110.0 −mL buffer solution is 0.110 M in NH3 and 0.135 M in NH4Br. Part...
A 110.0 −mL buffer solution is 0.110 M in NH3 and 0.135 M in NH4Br. Part A What mass of HCl could this buffer neutralize before the pH fell below 9.00? Express your answer using two significant figures. m=? Part B If the same volume of the buffer were 0.265 M in NH3 and 0.390 M in NH4Br, what mass of HCl could be handled before the pH fell below 9.00? Express your answer using two significant figures. m=?
A 130.0 −mL buffer solution is 0.105 M in NH3 and 0.135 M in NH4Br. A)...
A 130.0 −mL buffer solution is 0.105 M in NH3 and 0.135 M in NH4Br. A) What mass of HCl can this buffer neutralize before the pH falls below 9.00? B) If the same volume of the buffer were 0.250 M in NH3 and 0.390 M in NH4Br, what mass of HCl could be handled before the pH falls below 9.00?
A 130.0 −mL buffer solution is 0.100 M in NH3 and 0.135 M in NH4Br. A)...
A 130.0 −mL buffer solution is 0.100 M in NH3 and 0.135 M in NH4Br. A) What mass of HCl can this buffer neutralize before the pH falls below 9.00? B) If the same volume of the buffer were 0.270 M in NH3  and 0.400 M in NH4Br, what mass of HCl could be handled before the pH falls below 9.00?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT