Question

In: Chemistry

Consider the following reaction at 388 K 2SO2 (g) + O2 (g) <==> 2SO3 (g) At...

Consider the following reaction at 388 K
2SO2 (g) + O2 (g) <==> 2SO3 (g)
At equilibrium the reaction mixture contains 1.28 atm of O2 and 6.78 atm of SO3. The
equilibrium constant, KP, at this temperature is 46.7. Calculate the equilibrium partial
pressure of SO2.

Solutions

Expert Solution

                            2SO2 (g) + O2 (g) 2SO3 (g)

Equb pressure(atm)           a           1.28           6.78

Given Equilibrium constant , Kp = 46.7

Equilibrium constant , Kp = p2SO3 / ( p2SO2 x p O2 )

                            46.7 = 6.782 / (a2 x 1.28)

                                 a2 = 0.769

                                 a = 0.88 atm

Therefore the equilibrium partial pressure of SO2 is = a = 0.88 atm


Related Solutions

-A student ran the following reaction in the laboratory at 1143 K: 2SO2(g) + O2(g) 2SO3(g)...
-A student ran the following reaction in the laboratory at 1143 K: 2SO2(g) + O2(g) 2SO3(g) When she introduced 8.19×10-2 moles of SO2(g) and 8.56×10-2 moles of O2(g) into a 1.00 liter container, she found the equilibrium concentration of O2(g) to be 6.08×10-2 M. Calculate the equilibrium constant, Kc, she obtained for this reaction. Kc =____________ -A student ran the following reaction in the laboratory at 363 K: CH4(g) + CCl4(g)      2CH2Cl2(g) When she introduced 4.64×10-2 moles of CH4(g) and...
The following reaction wax examined at 250 C 2SO3(g)   <--------- -------------> 2SO2(g)   + O2(g) At a...
The following reaction wax examined at 250 C 2SO3(g)   <--------- -------------> 2SO2(g)   + O2(g) At a particular temperature , 14.5 mole SO3 is placed in to a 2.0 L container and dissociates according to the reaction above. At equilibrium 3.0 mole of SO2 is present. Calculate Kc for this reaction
Consider the following reaction: 2SO2(g)+O2(g)→2SO3(g) Part A If 276.0 mL of SO2 is allowed to react...
Consider the following reaction: 2SO2(g)+O2(g)→2SO3(g) Part A If 276.0 mL of SO2 is allowed to react with 161.4 mL of O2 (both measured at 327 K and 48.7 mmHg ), what is the limiting reactant? Part B What is the theoretical yield of SO3? nSO3 = Part C If 175.8 mL of SO3 is collected (measured at 327 K and 48.7 mmHg ), what is the percent yield for the reaction? Express your answer using four significant figures.
Consider the following reaction: 2SO2(g)+O2(g)→2SO3(g) What is the theoretical yield of SO3? If 188.5 mL of...
Consider the following reaction: 2SO2(g)+O2(g)→2SO3(g) What is the theoretical yield of SO3? If 188.5 mL of SO3 is collected (measured at 327 K and 54.5 mmHg ), what is the percent yield for the reaction?
Consider the following reaction: 2SO2(g)+O2(g)→2SO3(g) Part B What is the theoretical yield of SO3? nSO3 =...
Consider the following reaction: 2SO2(g)+O2(g)→2SO3(g) Part B What is the theoretical yield of SO3? nSO3 = Part C If 175.8 mL of SO3 is collected (measured at 327 K and 48.7 mmHg ), what is the percent yield for the reaction? Express your answer using four significant figures.
Consider the following reaction: 2SO2(g)+O2(g)→2SO3(g) 290.2 mL of SO2 is allowed to react with 151.8 mL...
Consider the following reaction: 2SO2(g)+O2(g)→2SO3(g) 290.2 mL of SO2 is allowed to react with 151.8 mL of O2 (both measured at 318 K and 47.9 mmHg ), what is the limiting reactant? What is the theoretical yield of SO3? If 170.7 mL of SO3 is collected (measured at 318 K and 47.9 mmHg ), what is the percent yield for the reaction?
ALL WITH EXPLANATIONS please :) 12. Consider the following reaction: 2SO2(g)  +  O2(g)  ⇄  2SO3(g)   +E             Which of the following w
ALL WITH EXPLANATIONS please :) 12. Consider the following reaction: 2SO2(g)  +  O2(g)  ⇄  2SO3(g)   +E             Which of the following will not shift the equilibrium to the right?             A.        Adding more O2             B.        Adding a catalyst             C.        Increasing the pressure             D.        Lowing the temperature 13.         Consider the following equilibrium system: CaCO3(s)  ⇄ CaO(s) +  CO2(g)             Which one of the following changes would cause the above system to shift left?             A.        Add more CaO             B.        Remove CaCO3             C.        Increase pressure             D.        Remove CO2 14.         Consider the following equilibrium: SO2Cl2(g)  +  energy  ⇄  SO2(g)  +  Cl2(g)             When the temperature is decreased, the equilibrium shifts             A.        Left...
For the reaction 2SO2(g) + O2(g) → 2SO3(g), ΔH° and ΔS° are both negative at 298...
For the reaction 2SO2(g) + O2(g) → 2SO3(g), ΔH° and ΔS° are both negative at 298 K, and the process is spontaneous at 298 K. Which of the following statements must also be true? A.ΔG is positive for the reaction at 298 K. B.The change in entropy is the driving force of the reaction. C.ΔG is temperature independent. D.The direction of the reaction may be reversed at high temperatures. E.At high temperature, ΔH becomes positive.
2SO2(g) + O2(g) <--> 2SO3(g) A sealed reaction vessel is charged with 5.0 atm SO2 and...
2SO2(g) + O2(g) <--> 2SO3(g) A sealed reaction vessel is charged with 5.0 atm SO2 and 2.5 M atm at 500 degrees Celsius. The reaction is allowed to equilibriate. At equilibrium 3.0 atm of SO3 is produced. What is the equilibrium concentration of each species. What is Kc for this reaction? Show all work.
The following reaction can occur at 298K under appropriate conditions. 2SO2(g) +O2(g)-----> 2SO3(g) An equilibrium mixture...
The following reaction can occur at 298K under appropriate conditions. 2SO2(g) +O2(g)-----> 2SO3(g) An equilibrium mixture contain O2(g) and SO3(g) at partial pressure of 0.50atm and 2.0atm respectively. Using data available in Appendix 4 of your textbook, determine the equilibrium partial pressure of SO2 in the mixture. Will this reaction be most favored at a high or at a low temperature, assuming standard conditions? Justify your reasoning Substance.             delta H°              S° SO2(g)                     -297.                    248 SO3(g)                     -396.                     257 O2(g)                         0.                         205
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT