Question

In: Statistics and Probability

1. Discuss the concept of a confidence interval estimate of the proportion. Include a discussion of:...

1. Discuss the concept of a confidence interval estimate of the proportion. Include a discussion of:

(a) the impact changing the sample size has on the calculation of the CIE holding all other variables constant. (Discuss how the CIE will change as the sample size "n" changes and WHY);

(b) the impact of changing the level of confidence on the CIE holding all other variables constant. (Discuss how the CIE will change as the confidence level changes and WHY.).

Solutions

Expert Solution

(A) .as we seen in this formula as sample size n increses margin of error decreses reaulting width of confidence interval decreses and go towards better precision and for decrease in sample size increse the CI width and and go towards less precision.

B).

this is the general formula for CI of proportion

as formula (1-alpha )*100% is the confidence ,and alpha is a level of significance.

as the confidence level increses the value of z increses resulting margin of error increses and then confidence interval width also increses and it goes towards lesser precision. or vice versa

suppose we have confidence level 90% then the Z value from table for two tail is 1.645 and if confidence level is 95% the Z value for two tail from standard table is 1.96 ,this can be seen that Margin of error increses ,

then Obiviously confidence width increses by incresing of confidence level by keeping all other variable constant.

Thank you.


Related Solutions

1.) A confidence interval was used to estimate the proportion of statistics students that are females....
1.) A confidence interval was used to estimate the proportion of statistics students that are females. A random sample of 72 statistics students generated the following 90% confidence interval: (0.438, 0.642). Which of the following interpretations is correct? Select one: A. 90% of the sampled students are female. B. We are 90% confidence that proportion of all statistics female students falls in the interval 0.438 to 0.642 C. 90% of all statistic students are female. D. We are 90% confident...
Construct a 95​% confidence interval to estimate the population proportion with a sample proportion equal to...
Construct a 95​% confidence interval to estimate the population proportion with a sample proportion equal to 0.45 and a sample size equal to 120. ----- A 95% confidence interval estimates that the population proportion is between a lower limit of ___ and an upper limit of ___ ????
Construct a 99​% confidence interval to estimate the population proportion with a sample proportion equal to...
Construct a 99​% confidence interval to estimate the population proportion with a sample proportion equal to 0.90 and a sample size equal to 250. ------A 99% confidence interval estimates that the population proportion is between a lower limit of ___ and an upper limit of ___. ????????
Construct a 99​% confidence interval to estimate the population proportion with a sample proportion equal to...
Construct a 99​% confidence interval to estimate the population proportion with a sample proportion equal to 0.50 and a sample size equal to 200. LOADING... Click the icon to view a portion of the Cumulative Probabilities for the Standard Normal Distribution table. A 99​% confidence interval estimates that the population proportion is between a lower limit of nothing and an upper limit of nothing. ​(Round to three decimal places as​ needed.)
Determine the margin of error for a confidence interval to estimate the population proportion for the...
Determine the margin of error for a confidence interval to estimate the population proportion for the following confidence levels with a sample proportion equal to 0.36 and n=125. a. 90​%             b. 95​%             c. 98​% a. The margin of error for a confidence interval to estimate the population proportion for the 90% confidence level is _ b. The margin of error for a confidence interval to estimate the population proportion for the 95% confidence level is _ c. The margin of...
Determine the margin of error for a confidence interval to estimate the population proportion for the...
Determine the margin of error for a confidence interval to estimate the population proportion for the following confidence levels with a sample proportion equal to 0.45 and n equals=120. a. 90​% b. 95​% c. 99​%
Determine the margin of error for a confidence interval to estimate the population proportion for the...
Determine the margin of error for a confidence interval to estimate the population proportion for the following confidence levels with a sample proportion equal to .40 and n=100 A) 90% b) 95% c) 99%
A confidence interval was used to estimate the proportion of math majors that are female. A...
A confidence interval was used to estimate the proportion of math majors that are female. A random sample of 72 math majors generated the following confidence interval: (0.438, 0.642). Using the information above, what size sample would be necessary if we wanted to estimate the true proportion to within 5% using 95% reliability? a. 396 b. 400 c. 385 d. 382
Determine the margin of error for a confidence interval to estimate the population proportion for the...
Determine the margin of error for a confidence interval to estimate the population proportion for the following confidence levels with a sample proportion equal to 0.35 and n=120 a)90​% b)95​% c)98​% Click the icon to view a portion of the Cumulative Probabilities for the Standard Normal Distribution table. a. The margin of error for a confidence interval to estimate the population proportion for the 90 % confidence level is _____​(Round to three decimal places as​ needed.) b. The margin of...
Determine the margin of error for a 98​% confidence interval to estimate the population proportion with...
Determine the margin of error for a 98​% confidence interval to estimate the population proportion with a sample proportion equal to 0.80 for the following sample sizes. a. n equals125             b. n equals200             c. n equals250 The margin of error for a 98​% confidence interval to estimate the population proportion with a sample proportion equal to 0.80 and sample size n equals=125 is nothing
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT