Question

In: Computer Science

Question. Programming question: Dimension Reduction In this question, you are asked to run Singular Value Decomposition...

Question. Programming question: Dimension Reduction
In this question, you are asked to run Singular Value Decomposition (SVD) on Fashion-MNIST data set, interpret the output and train generative classifiers for multi-nomial classification of 10 classes. For the Fashion-MNIST data set, you can find more details in the original GitHub website or Kaggle website.

Kaggle: https://www.kaggle.com/zalando-research/fashionmnist

GetHub: https://github.com/zalandoresearch/fashion-mnist

Tasks:

?Load the training and test data sets from fashion-mnist train.csv and fashion- mnist test.csv. Each row uses a vector of dimension 784 with values between 0 (black) and 255 (white) on the gray color scale.

Use SVD to reduce the number of dimensions of the training data set so that it explains just above 90% of the total variance. Remember to scale the data before performing SVD. Report how many components you select and their variance ratios.

Train generative classifiers (Naive Bayes and KNN) and discriminative classifier (multinomial logistic regression) on both the training data set after SVD and the original data set (without dimension reduction). Fine-tune the hyper-parameters, e.g. learning rate in MLR and k value in KNN, to achieve best performance on a validation set split from the training set. Write a brief description to compare the performances of these classifiers in terms of accuracy on the test set.

?Guidelines:
In this homework, you are allowed to use scikit-learn’s implementations Multinomial Logistic Regression, Naive Bayes, and KNN directly.

You are allowed to use a library implementation of SVD. For python users, we recommend scikit-learn’s implementation TruncatedSVD.

Solutions

Expert Solution

Fashion-MNIST

1) Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples.

2) Each example is a 28x28 grayscale image, associated with a label from 10 classes.

3) Zalando intends Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms.

4) It shares the same image size and structure of training and testing splits.

  1. Exploring the Dataset
    • 1.1 Importing Libraries
    • 1.2 Extract dataset
    • 1.3 Features
    • 1.4 Examine Dimensions
    • 1.5 Examine NaN values
  2. Visualizing the Dataset
    • 2.1 Plotting Random Images
    • 2.2 Distribution of Labels
  3. Data PreProcessing
    • 3.1 Setting Random Seeds
    • 3.2 Splitting Data
    • 3.3 Reshaping Images
    • 3.4 Normalization
    • 3.5 One Hot Encoding
  4. Training ConvNet
    • 4.1 Building a ConvNet
    • 4.2 Compiling Model
    • 4.3 Model Summary
    • 4.4 Learning Rate Decay
    • 4.5 Data Augmentation
    • 4.6 Fitting the Model
  5. Evaluating the Model
    • 5.1 Plotting Train and Validation curves
  6. Plotting Confusion Matrix
  7. Visualization of Predicted Classes
    • 7.1 Correctly Predicted Classes
    • 7.2 Incorrectly Predicted Classes
  8. Classification Report
  9. Predicting on Test Data

1) Exploring The Dataset

1.1:  Importing Libraries

import warnings
warnings.filterwarnings('ignore')


# Handle table-like data and matrices :
import numpy as np
import pandas as pd
import math 
import itertools



# Modelling Algorithms :

# Classification
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier , GradientBoostingClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis , QuadraticDiscriminantAnalysis

# Regression
from sklearn.linear_model import LinearRegression,Ridge,Lasso,RidgeCV, ElasticNet
from sklearn.ensemble import RandomForestRegressor,BaggingRegressor,GradientBoostingRegressor,AdaBoostRegressor 
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor
from sklearn.neural_network import MLPRegressor




# Modelling Helpers :
from sklearn.preprocessing import Imputer , Normalizer , scale
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.feature_selection import RFECV
from sklearn.model_selection import GridSearchCV , KFold , cross_val_score



#preprocessing :
from sklearn.preprocessing import MinMaxScaler , StandardScaler, Imputer, LabelEncoder
#evaluation metrics :

# Regression
from sklearn.metrics import mean_squared_log_error,mean_squared_error, r2_score,mean_absolute_error 

# Classification
from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score  


# Deep Learning Libraries
from keras.models import Sequential, load_model
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from keras.optimizers import Adam,SGD,Adagrad,Adadelta,RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ReduceLROnPlateau, LearningRateScheduler
from keras.utils import to_categorical



# Visualisation
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
import seaborn as sns
import missingno as msno



# Configure visualisations
%matplotlib inline
mpl.style.use( 'ggplot' )
plt.style.use('fivethirtyeight')
sns.set(context="notebook", palette="dark", style = 'whitegrid' , color_codes=True)
Using TensorFlow backend.
# Center all plots
from IPython.core.display import HTML
HTML("""
<style>
.output_png {
    display: table-cell;
    text-align: center;
    vertical-align: middle;
}
</style>
""");

# Make Visualizations better
params = { 
    'axes.labelsize': "large",
    'xtick.labelsize': 'x-large',
    'legend.fontsize': 20,
    'figure.dpi': 150,
    'figure.figsize': [25, 7]
}
plt.rcParams.update(params)

1.2:  Extract Dataset

train = pd.read_csv('../input/fashion-mnist_train.csv')
test = pd.read_csv('../input/fashion-mnist_test.csv')
df = train.copy()
df_test = test.copy()

df.head()

1.4:  Examine Dimensions

print('Train: ', df.shape)
print('Test: ', df_test.shape)

1.5:  Examine NaN Values

# Train
df.isnull().any().sum()
# Test
df_test.isnull().any().sum()

2) Visualizing the Dataset

2.1:  Plotting Random Images

# Mapping Classes
clothing = {0 : 'T-shirt/top',
            1 : 'Trouser',
            2 : 'Pullover',
            3 : 'Dress',
            4 : 'Coat',
            5 : 'Sandal',
            6 : 'Shirt',
            7 : 'Sneaker',
            8 : 'Bag',
            9 : 'Ankle boot'}
fig, axes = plt.subplots(4, 4, figsize = (15,15))
for row in axes:
    for axe in row:
        index = np.random.randint(60000)
        img = df.drop('label', axis=1).values[index].reshape(28,28)
        cloths = df['label'][index]
        axe.imshow(img, cmap='gray')
        axe.set_title(clothing[cloths])
        axe.set_axis_off()

2.2: Distribution of Labels

df['label'].value_counts()
sns.factorplot(x='label', data=df, kind='count', size=3, aspect= 1.5)

3) Data PreProcessing

3.1: Setting Random Seeds

# Setting Random Seeds for Reproducibilty.
seed = 66
np.random.seed(seed)

3.2: Splitting Data into Train and Validation Set

Now we are gonna split the training data into Train and Validation Set. Train set is used for Training the model and Validation set is used for Evaluating our Model's Performance on the Dataset.

This is achieved using the train_test_split method of scikit learn library.

In [14]:

X = train.iloc[:,1:]
Y = train.iloc[:,0]
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.1, random_state=seed)

3.3: Reshaping the Images

# reshape(examples, height, width, channels) x_train = x_train.values.reshape((-1, 28, 28, 1)) x_test = x_test.values.reshape((-1, 28, 28, 1)) df_test.drop('label', axis=1, inplace=True) df_test = df_test.values.reshape((-1, 28, 28, 1))

3.4 : Normalization

# You need to make sure that your Image is cast into double/float from int before you do this scaling 
# as you will most likely generate floating point numbers.
# And had it been int, the values will be truncated to zero.

x_train = x_train.astype("float32")/255
x_test = x_test.astype("float32")/255
df_test = df_test.astype("float32")/255

3.5: One Hot Encoding

y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)

print(y_train.shape)
print(y_test.shape)

4) Training a Convolutional Neural Network

4.1: Building a ConvNet

model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', strides=1, padding='same', 
                 data_format='channels_last', input_shape=(28,28,1)))
model.add(BatchNormalization())

model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', strides=1, padding='same', 
                 data_format='channels_last'))
model.add(BatchNormalization())
model.add(Dropout(0.25))

model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', strides=1, padding='same', 
                 data_format='channels_last'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
    
    
model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu', strides=1, padding='same', 
                 data_format='channels_last'))
model.add(BatchNormalization())
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))

4.2: Compiling the Model

# Optimizer
optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999 )

In [21]:

# Compiling the model
model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"])

4.4: Learning Rate Decay

reduce_lr = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x)

4.5:  Data Augmentation

datagen = ImageDataGenerator(
        rotation_range = 8,  # randomly rotate images in the range (degrees, 0 to 180)
        zoom_range = 0.1, # Randomly zoom image 
        shear_range = 0.3,# shear angle in counter-clockwise direction in degrees  
        width_shift_range=0.08,  # randomly shift images horizontally (fraction of total width)
        height_shift_range=0.08,  # randomly shift images vertically (fraction of total height)
        vertical_flip=True)  # randomly flip images

In [25]:

datagen.fit(x_train)

4.6:  Fitting the Model

batch_size = 128
epochs = 40
# Fit the Model
history = model.fit_generator(datagen.flow(x_train, y_train, batch_size = batch_size), epochs = epochs, 

5) Evaluating the Model

score = model.evaluate(x_test, y_test)

print('Loss: {:.4f}'.format(score[0]))
print('Accuracy: {:.4f}'.format(score[1]))

5.1: Plotting the Training and Validation Curves
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title("Model Loss")
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend(['Train', 'Test'])
plt.show()
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title("Model Accuracy")
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend(['Train', 'Test'])
plt.show()

6. Confusion Matrix:

def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=90)
    plt.yticks(tick_marks, classes)

    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, cm[i, j],
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')

In [32]:

# Predict the values from the validation dataset
Y_pred = model.predict(x_test)
# Convert predictions classes to one hot vectors 
Y_pred_classes = np.argmax(Y_pred,axis = 1) 
# Convert validation observations to one hot vectors
Y_true = np.argmax(y_test,axis = 1) 
# compute the confusion matrix
confusion_mtx = confusion_matrix(Y_true, Y_pred_classes) 
# plot the confusion matrix
plot_confusion_matrix(confusion_mtx, 
            classes = ['T-shirt/Top','Trouser','Pullover','Dress','Coat','Sandal','Shirt','Sneaker','Bag','Ankle Boot'])

7) Visualization of Predicted Classes

7.1: Correctly Predicted Classes

correct = []
for i in range(len(y_test)):
    if(Y_pred_classes[i] == Y_true[i]):
        correct.append(i)
    if(len(correct) == 4):
        break

fig, ax = plt.subplots(2,2, figsize=(12,6))
fig.set_size_inches(10,10)
ax[0,0].imshow(x_test[correct[0]].reshape(28,28), cmap='gray')
ax[0,0].set_title("Predicted Label : " + str(clothing[Y_pred_classes[correct[0]]]) + "\n"+"Actual Label : " + 
                 str(clothing[Y_true[correct[0]]]))
ax[0,1].imshow(x_test[correct[1]].reshape(28,28), cmap='gray')
ax[0,1].set_title("Predicted Label : " + str(clothing[Y_pred_classes[correct[1]]]) + "\n"+"Actual Label : " + 
                 str(clothing[Y_true[correct[1]]]))
ax[1,0].imshow(x_test[correct[2]].reshape(28,28), cmap='gray')
ax[1,0].set_title("Predicted Label : " + str(clothing[Y_pred_classes[correct[2]]]) + "\n"+"Actual Label : " + 
                 str(clothing[Y_true[correct[2]]]))
ax[1,1].imshow(x_test[correct[3]].reshape(28,28), cmap='gray')
ax[1,1].set_title("Predicted Label : " + str(clothing[Y_pred_classes[correct[3]]]) + "\n"+"Actual Label : " + 
                 str(clothing[Y_true[correct[3]]]))

7.2: Incorrectly Predicted Classes

incorrect = []
for i in range(len(y_test)):
    if(not Y_pred_classes[i] == Y_true[i]):
        incorrect.append(i)
    if(len(incorrect) == 4):
        break
fig, ax = plt.subplots(2,2, figsize=(12,6))
fig.set_size_inches(10,10)
ax[0,0].imshow(x_test[incorrect[0]].reshape(28,28), cmap='gray')
ax[0,0].set_title("Predicted Label : " + str(clothing[Y_pred_classes[incorrect[0]]]) + "\n"+"Actual Label : " + 
                 str(clothing[Y_true[incorrect[0]]]))
ax[0,1].imshow(x_test[incorrect[1]].reshape(28,28), cmap='gray')
ax[0,1].set_title("Predicted Label : " + str(clothing[Y_pred_classes[incorrect[1]]]) + "\n"+"Actual Label : " + 
                 str(clothing[Y_true[incorrect[1]]]))
ax[1,0].imshow(x_test[incorrect[2]].reshape(28,28), cmap='gray')
ax[1,0].set_title("Predicted Label : " + str(clothing[Y_pred_classes[incorrect[2]]]) + "\n"+"Actual Label : " + 
                 str(clothing[Y_true[incorrect[2]]]))
ax[1,1].imshow(x_test[incorrect[3]].reshape(28,28), cmap='gray')
ax[1,1].set_title("Predicted Label : " + str(clothing[Y_pred_classes[incorrect[3]]]) + "\n"+"Actual Label : " + 
                 str(clothing[Y_true[incorrect[3]]]))

8) Classification Report

classes = ['T-shirt/Top','Trouser','Pullover','Dress','Coat','Sandal','Shirt','Sneaker','Bag','Ankle Boot']
print(classification_report(Y_true, Y_pred_classes, target_names = classes))

9) Predicting on the Test Data

X = df_test
Y = to_categorical(test.iloc[:,0])

In [39]:

score = model.evaluate(X, Y)

print("Loss: {:.4f}".format(score[0]))
print("Accuracy: {:.4f}".format(score[1]))

Related Solutions

Question. Programming question: Dimension Reduction In this question, you are asked to run Singular Value Decomposition...
Question. Programming question: Dimension Reduction In this question, you are asked to run Singular Value Decomposition (SVD) on Fashion-MNIST data set, interpret the output and train generative classifiers for multi- nomial classification of 10 classes. For the Fashion-MNIST data set, you can find more details in the original GitHub website or Kaggle website. In this assignment, you are allowed to use a library implementation of SVD. For python users, we recommend scikit-learn’s implementation TruncatedSVD. Tasks: ?Load the training and test...
Find the singular value decomposition of A = [ (3 2 2), (2 3 2) ]...
Find the singular value decomposition of A = [ (3 2 2), (2 3 2) ] and determine the angle of rotation induced by U and V . Also, write the rank 1 decomposition of A in terms of the columns of U and rows of V . Can we do dimensionality reduction in this case?
Find a singular value decomposition for the matrix A = [ 1 0 -1, -1 1...
Find a singular value decomposition for the matrix A = [ 1 0 -1, -1 1 0] (that means 1 0 -1 is the first row and -1 1 0 is the second) If you could provide a step-by-step tutorial on how to complete this I'd greatly appreciate it.
How can Singular Value Decomposition be used on image compression and its limitation?
How can Singular Value Decomposition be used on image compression and its limitation?
You are asked to investigate the use of mathematical programming in accounting: applications and you decide...
You are asked to investigate the use of mathematical programming in accounting: applications and you decide to depend on secondary data sources. What search tools might you use? Which do you think would be the most useful?                                                                                                                                    [5 Marks] What problems of secondary data quality must researchers face?       [10 Mark] How can the researchers overcome problems of secondary data quality?                                                                                                              [10 Marks]
(Python Programming) You are asked to develop a cash register for a fruit shop that sells...
(Python Programming) You are asked to develop a cash register for a fruit shop that sells oranges and apples. The program will first ask the number of customers. Subsequently, for each customer, it will ask the name of the customer and the number of oranges and apples they would like to buy. And then print a summary of what they bought along with the bill as illustrated in the session below: How many customers? 2 Name of Customer 1 Harry...
You are asked to run a chromatographic column for separation of a mixture of compounds: CH3CH2OCH3,...
You are asked to run a chromatographic column for separation of a mixture of compounds: CH3CH2OCH3, CH3(CH2)3OH, CH3CO2H, CH3(CH2)8CH3. Two solvents have been provided i.e. acetone and hexane. Which eluting solvent would you use first and predict the order of elution for the compounds.
Using the table below, you are asked to calculate perform three-factor ROE decomposition (i.e. calculate ROE...
Using the table below, you are asked to calculate perform three-factor ROE decomposition (i.e. calculate ROE and its components) for all three of the following companies. What would you advise each company to do to improve its ROE? Discuss the specific component that needs to be improved and present an example of how it could done. Please round your answers to two decimal places. MTR TKO NRM Sales 6,900 2,600 1,900 Net income 200 100 100 Average Assets 4,000 4,800...
In Programming Challenge 12 of Chapter 3, you were asked to write a program that converts...
In Programming Challenge 12 of Chapter 3, you were asked to write a program that converts a Celsius temperature to Fahrenheit. Modify that program so it uses a loop to display a table of the Celsius temperatures 0–20, and their Fahrenheit equivalents. Display table on screen and it a .txt file. c++
C++ Programming Enum - Structure - Array You are asked to develop software for HR department...
C++ Programming Enum - Structure - Array You are asked to develop software for HR department to calculate employee’s weekly salary. The program should contain the following information about a student by declaring a struct: Name (string of characters)        Employee ID (string of characters)        Level (ENGINEER, MANGER, DIRECTOR)        Hourly Rate (floating-point number)        Working Hours (floating-point number)        Weekly Salary (floating-point number) Your program will read an employee data and print the information of employee’s Name, Employee...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT