Question

In: Physics

At the inlet of a steam turbine the following information are given: p=1000 kPa, T=500 deg-C,...

At the inlet of a steam turbine the following information are given: p=1000 kPa, T=500 deg-C, u = 3124.3 kJ/kg, v = 0.35411, V=20 m/s, z=10 m, and mdot=10 kg/s.

determine the inlet area.

Determine the flow work at the inlet in MW

Determine the rate of transport of flow energy (Jdot).

If you neglect ke and pe in the expression for j, how would the answer in part c change? in percentage

Solutions

Expert Solution

For an inlet steam turbine, we have

pressure, p = 1000 kPa

temperature, T = 500 0C

kinetic energy, U = 3124.3 kJ/kg

velocity of the turbine, v = 20 m/s

mass flow rate, = 10 kg/sec

(a) The inlet area will be given as ::

using an equation, A = V / v                                                                     { eq.1 }

where, V = specific Volume of Superheated Steam = 0.35411 m3/kg             (from table)

inserting the values in above eq.

A = (0.35411 m3/kg) (10 kg/sec) / (20 m/s)

A = 0.17705 m2

(b) the flow work at the inlet in MW which will be given as ::

u = [hin + K.Ein] { eq.2 }

where, hin = specific enthalpy of superheated steam = 3479 kJ/kg                    (from table)

inserting the values in eq.2,

u = (10 kg/sec) [(3479 kJ/kg) + (3124.3 kJ/kg)]

u = (10 kg/sec) [(6603.3 kJ/kg)]

u = (66033 kJ/s) (1 MW s /1000 kJ)

u = 66.03 MW


Related Solutions

1- Steam enters a nozzle at 500 °C and 1000 kPa with a velocity of 15...
1- Steam enters a nozzle at 500 °C and 1000 kPa with a velocity of 15 m/s. It leaves the nozzle at 200 °C and 300 kPa while losing heat at a rate of 30 kW. For an inlet area of 700 cm2, determine the velocity of the steam at the nozzle exit.?
A steam turbine operates with steam at inlet conditions of 3.5 MPa and 3500 C. The...
A steam turbine operates with steam at inlet conditions of 3.5 MPa and 3500 C. The exit stream leave the turbine is at 0.8 MPa and is known to contain a mixture of saturated vapor and liquid. The steam rate through the turbine is 1000 kg/h. A (negligible) fraction of exit stream is bled through a throttle valve to 0.10 MPa and is found to be 1250 C. The measured output of the turbine is 100 kW. a) Determine the...
A gas turbine expands air adiabatically at 1000 kPa and 550 ⁰C to 120 kPa and...
A gas turbine expands air adiabatically at 1000 kPa and 550 ⁰C to 120 kPa and 130⁰C. Air enters the turbine through a 0.25 m 2 opening with an aveage velocity of 45 m/s, and exhausts through a 1 m2 opening. Assume the air is ideal gas with constant specific heats. Take the constant pressure specific heat and gas constant of air as Cp= 1.05 kJ/(kg K) and R=0.287 kJ/(kg K), respectively. Determine; (a) the mass flow rate of air...
The temperature and pressure of the steam at the inlet of a high pressure turbine is...
The temperature and pressure of the steam at the inlet of a high pressure turbine is 500 ° C, respectively. It is 12 MPa and 300 ° C and 3MPa at its outlet. If the mass flow of steam is 400 kg / h, how much is the isentropic efficiency of the turbine?
Steam enters a turbine at a velocity of 200 m/s. The inlet conditions of the steam...
Steam enters a turbine at a velocity of 200 m/s. The inlet conditions of the steam are at 4000 kPA and 500°C. The diameter of the inlet pipe is 50 mm. The outlet conditions of the steam are 80 kPa and a quality of 1.0. The diameter of the outlet pipe is 250 mm. Determine the turbine power output in kJ/s assuming the kinetic energy change and potential energy change are both negligible. Calculate the change in kinetic energy to...
Steam at 4 MPa and 350°C is expanded in an adiabatic turbine to 120 kPa. What...
Steam at 4 MPa and 350°C is expanded in an adiabatic turbine to 120 kPa. What is the isentropic efficiency of this turbine if the steam is exhausted as a saturated vapor?
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa,...
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa, 500°C and 80 m/s, and the exit conditions are 30 kPa, 92% quality and 50 m/s. The mass flowrate of the steam is 12 kg/s. Investigate the effect of the turbine exit pressure on the power output of the turbine. Let the exit pressure vary from 10 to 200 kPa. Plot (1) T2 vs P2 and 2) Plot the power output (W_dot_T in MW)...
a steam turbine has an inlet flow of 3 kg/s water at 3.5 MPa and 450°C...
a steam turbine has an inlet flow of 3 kg/s water at 3.5 MPa and 450°C with a velocity of 140 m/s. The exit is at 800 KPa and 300°C and very low velocity. (a) How much heat (in MW) is assumed to be transferred into the turbine? (b) what is the work that goes into the turbine? (c) find the work produced by the turbine? (d) Find the entropy generation of the process. (e) find the carnot efficiency of...
Steam enters an adiabatic turbine steadily at 3 MPa and 400°C and leaves at 50 kPa....
Steam enters an adiabatic turbine steadily at 3 MPa and 400°C and leaves at 50 kPa. If the isentropic efficiency of the turbine is 66.7%, determine the actual temperature of steam at turbine exit. The mass flow rate of the steam flowing through the turbine is 218 kg/min, determine the power output from the turbine. Plot the T-s diagram.
The velocity of steam at inlet to a simple impulse turbine is 1200 m/s and the...
The velocity of steam at inlet to a simple impulse turbine is 1200 m/s and the nozzle angle is 21°. The blade speed is 500 m/s and the blades are symmetrical. Evaluate: The blade angles if the steam is to enter the blades without shock. If the friction effects on the blade are negligible, specify the tangential force on the blades and the diagram power for a mass flow of 0.85 kg/s. What are the axial thrust and the diagram...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT