Question

In: Physics

A 40.0-uF capacitor is connected to a 50.0-ohm resistor and a generator whose rms output is...

A 40.0-uF capacitor is connected to a 50.0-ohm resistor and a generator whose rms output is 30.0 V at 60.0 Hz.

Find...

A) the rms current circuit

B) the rms voltage drop across the resistor

C) the rms voltage drop across the capacitor

D) and the phase angle for the circuit

Please Explain how to get these answers, Thankyou

Solutions

Expert Solution

Given:

C=40uF

R=50ohm

V=30Volt

f=60Hz

1) To find rms current

I rms = Ip/?2

But, Ip= V/R

          = 30/50

        Ip= 0.6 Amp

I rms = 0.6/?2

        = 0.4243

2) rms Voltage drop= Irms * R

                          = 0.4243 * 50

                              = 21.2134

4) phase angle= T * f * 360

                      = 0.0167 * 60 * 360

                       = 360


Related Solutions

part a) When a 5.0-μF capacitor is connected to a generator whose rms output is 31...
part a) When a 5.0-μF capacitor is connected to a generator whose rms output is 31 V, the current in the circuit is observed to be 0.25 A. What is the frequency of the source? (answer must be in Hz) part b) An inductor has a 58.4-Ω reactance when connected to a 60.0-Hz source. The inductor is removed and then connected to a 47.0-Hz source that produces a 115-V rms voltage. What is the maximum current in the inductor? (answer...
A generator with an rms voltage of 130 V is connected in series to a resistor...
A generator with an rms voltage of 130 V is connected in series to a resistor 3.65 kΩ and a capacitor 3.00 μF . 1. At what frequency must this circuit be operated for the current to lead the voltage by 29.0 ∘? (Answer Hz) 2. Using the frequency found in part A, find the average power consumed by this circuit. (Answer in W) ------------------------------------------ A 1.6-m wire is wound into a coil with a radius of 3.2 cm. 1....
A 3 Ohm resistor is connected in series with a 5 Ohm resistor to a battery....
A 3 Ohm resistor is connected in series with a 5 Ohm resistor to a battery. Which of the following statements are true (more than one can be true)? Group of answer choices A )The current flowing in each resistor is the same. B)The current through the 5 Ohm resistor is lower. C)The power loss in the 5 Ohm resistor is greater. D)The potential difference across both resistors is the same. E)The potential difference across the 3 Ohm resistor is...
A 3 Ohm resistor is connected in series with a 5 Ohm resistor to a battery....
A 3 Ohm resistor is connected in series with a 5 Ohm resistor to a battery. Which of the following statements are true (there can be more than one)? a) The power loss in the 5 Ohm resistor is greater. b) The current through the 5 Ohm resistor is lower. c) The potential difference across both resistors is the same. d) The potential difference across the 3 Ohm resistor is higher. e) The current flowing in each resistor is the...
A resistor, inductor, and capacitor are connected in parallel with a function generator. Calculate the apparent...
A resistor, inductor, and capacitor are connected in parallel with a function generator. Calculate the apparent power of the circuit. Enter your answer in VA but do not enter the unit. Round to the nearest whole VA. VT = 117V RMS, R = 170Ω, XL = 169Ω, XC = 46Ω
When an AC source is connected across a 11.5-? resistor, the rms current in the resistor...
When an AC source is connected across a 11.5-? resistor, the rms current in the resistor is 8.66 A. (a) Find the rms voltage across the resistor. V (b) Find the peak voltage of the source. V (c) Find the maximum current in the resistor. A (d) Find the average power delivered to the resistor. W
A 20 volt battery is connected in series to an inductor and a 2 Ohm resistor....
A 20 volt battery is connected in series to an inductor and a 2 Ohm resistor. After 8.36 milli-seconds, the current in the circuit is 6.30 A. What is the time constant of the circuit in milli-seconds?
A circuit is constructed with an AC generator, a resistor, capacitor and inductor as shown. The...
A circuit is constructed with an AC generator, a resistor, capacitor and inductor as shown. The generator voltage varies in time as ε =Va - Vb = εmsinωt, where εm = 120 V and ω = 231 radians/second. The inductance L = 155 mH. The values for the capacitance C and the resistance R are unkown. What is known is that the current in the circuit leads the voltage across the generator by φ = 49 degrees and the average...
An uncharged capacitor and a resistor are connected in series to a source of emf. If...
An uncharged capacitor and a resistor are connected in series to a source of emf. If e m f = 10.0 V, C = 21.0 µF, and R = 100 Ω, find the following. (a) the time constant of the circuit (b) the maximum charge on the capacitor (c) the charge on the capacitor at a time equal to one time constant after the battery is connected
A 500 uF capacitor is connected across a 1.25 H inductor At a certain time, the...
A 500 uF capacitor is connected across a 1.25 H inductor At a certain time, the charge on the capacitor is zero and the current is 0.342 A. a) How much later will the capacitor charge reach its peak? b) What's the total energy in the circuit? c) What is the peak charge on the capacitor?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT