In: Statistics and Probability
Daily Gross Revenue=766.981 + 2.977 * Daily Tour Income – 12.31 * Number of Tourists
Report and interpret of both coefficients of determination.
Report and explain the significance of each independent variable in both regressions.
Report and explain the significance of both models.
Predict y for a fictitious set of x values for both models.
Years | Weekend | Daily Tour Income | Number of Tourists=y | Daily Gross Revenue | Total Daily Income |
1 | Friday | 3378 | 432 | 4838.95 | 8216.95 |
1 | Saturday | 1198 | 139 | 3487.78 | 4685.78 |
1 | Sunday | 3630 | 467 | 4371.3 | 8001.3 |
2 | Friday | 4550 | 546 | 6486.48 | 11036.48 |
2 | Saturday | 2467 | 198 | 3437.39 | 5904.39 |
2 | Sunday | 3593 | 452 | 4571.43 | 8164.43 |
3 | Friday | 898 | 119 | 2515.15 | 3413.15 |
3 | Saturday | 2812 | 342 | 5462.11 | 8274.11 |
3 | Saturday | 2650 | 321 | 5498.89 | 8148.89 |
4 | Friday | 3230 | 402 | 5071.14 | 8301.14 |
4 | Saturday | 4798 | 523 | 8051.43 | 12849.43 |
4 | Sunday | 3253 | 353 | 4291.95 | 7544.95 |
5 | Friday | 2848 | 347 | 4545 | 7393 |
5 | Saturday | 4632 | 534 | 8865.01 | 13497.01 |
5 | Sunday | 3767 | 412 | 4710.64 | 8477.64 |
6 | Friday | 4499 | 529 | 10752.74 | 15251.74 |
6 | Saturday | 3868 | 422 | 6435.63 | 10303.63 |
6 | Sunday | 2489 | 288 | 3389.37 | 5878.37 |
7 | Friday | 3448 | 367 | 6129.58 | 9577.58 |
7 | Saturday | 3612 | 406 | 7357.12 | 10969.12 |
7 | Sunday | 1937 | 216 | 2121.76 | 4058.76 |
8 | Friday | 2548 | 294 | 4738.86 | 7286.86 |
8 | Saturday | 2833 | 317 | 4141.98 | 6974.98 |
8 | Sunday | 2214 | 284 | 4878.35 | 7092.35 |
9 | Friday | 1520 | 169 | 4102.49 | 5622.49 |
9 | Saturday | 4322 | 462 | 8639.55 | 12961.55 |
9 | Sunday | 1833 | 203 | 3946.71 | 5779.71 |
10 | Friday | 2271.63 | 235 | 4236.31 | 6507.94 |
10 | Saturday | 2407.88 | 266 | 5613.27 | 8021.15 |
10 | Sunday | 1772.17 | 182 | 5580.17 | 7352.34 |
11 | Friday | 1494 | 177 | 3833.52 | 5327.52 |
11 | Saturday | 1998 | 213 | 3986.57 | 5984.57 |
11 | Sunday | 1388 | 165 | 2721.56 | 4109.56 |
12 | Friday | 1925 | 190 | 3952.19 | 5877.19 |
12 | Saturday | 2695 | 243 | 6281.3 | 8976.3 |
12 | Sunday | 1525 | 172 | 3356.14 | 4881.14 |
13 | Friday | 1725 | 187 | 3822.59 | 5547.59 |
13 | Saturday | 2450 | 253 | 4141.75 | 6591.75 |
13 | Sunday | 1407.5 | 173 | 3312.41 | 4719.91 |
14 | Friday | 2394 | 242 | 4571.5 | 6965.5 |
14 | Saturday | 3012 | 311 | 6363.3 | 9375.3 |
14 | Sunday | 2058 | 239 | 3502.22 | 5560.22 |
15 | Friday | 2427 | 267 | 5881.13 | 8308.13 |
15 | Saturday | 3189 | 336 | 10409.13 | 13598.13 |
15 | Sunday | 2109 | 178 | 4955.05 | 7064.05 |
16 | Friday | 2244 | 184 | 4347.41 | 6591.41 |
16 | Saturday | 3195 | 274 | 4935.17 | 8130.17 |
16 | Sunday | 1017 | 114 | 3486.27 | 4503.27 |
17 | Friday | 3470 | 325 | 6290.99 | 9760.99 |
17 | Saturday | 5323 | 478 | 13132.55 | 18455.55 |
17 | Sunday | 2345 | 242 | 5014.45 | 7359.45 |
18 | Friday | 1671 | 177 | 2740.23 | 4411.23 |
18 | Saturday | 2321.94 | 246 | 4423.31 | 6745.25 |
18 | Sunday | 1542 | 182 | 2650.48 | 4192.48 |
Analysis
regression 1:
1)
regression equation:
Daily Gross Revenue = 1408.52 + 12.68*number of
tourists
2)
R^2 = 48.91%
3)
Ho: beta1 is not significant
h1: beta1 is significant
With t=7.05, p<5%, I reject ho and conclude that beta1 is
significant.
4)
Ho: model is not significant
h1: model is significant
With F=49.79, p<5%, I reject ho and conclude that the model is
significant.
5)
when x= 119,
predicted Y = 1408.52 + 12.68*119 = 2917.44
regression 2:
1)
regression equation:
Daily Gross Revenue = 748.65179 + 1.6362*Daily Tour
Income
2)
R^2 = 62.707%
3)
Ho: beta1 is not significant
h1: beta1 is significant
With t=9.35, p<5%, I reject ho and conclude that beta1 is
significant.
4)
Ho: model is not significant
h1: model is significant
With F=87.43, p<5%, I reject ho and conclude that the model is
significant.
5)
when x= 3012,
predicted Y = 748.65179 + 1.6362*3012 = 5676.88619
procedure
data -> data analysis -> regression
regression 1: dependent variable: Daily Gross Revenue
independent variable: Number of Tourists
regression 2: dependent variable: Daily Gross Revenue
independent variable: Daily Tour Income
output
regression 1:
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.699382402 | |||||||
R Square | 0.489135744 | |||||||
Adjusted R Square | 0.479311431 | |||||||
Standard Error | 1543.231194 | |||||||
Observations | 54 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 118573929.8 | 1.19E+08 | 49.78829188 | 4.02752E-09 | |||
Residual | 52 | 123841250.9 | 2381563 | |||||
Total | 53 | 242415180.7 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 1408.526138 | 566.125925 | 2.488009 | 0.016088648 | 272.5113593 | 2544.541 | 272.5114 | 2544.541 |
Number of Tourists | 12.68245322 | 1.797378968 | 7.056082 | 4.02752E-09 | 9.075748453 | 16.28916 | 9.075748 | 16.28916 |
regression 2:
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.791878228 | |||||||
R Square | 0.627071127 | |||||||
Adjusted R Square | 0.619899418 | |||||||
Standard Error | 1318.533714 | |||||||
Observations | 54 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 152011560.6 | 1.52E+08 | 87.43677682 | 1.00186E-12 | |||
Residual | 52 | 90403620.06 | 1738531 | |||||
Total | 53 | 242415180.7 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 748.6517999 | 500.552028 | 1.495652 | 0.140789091 | -255.7793278 | 1753.083 | -255.779 | 1753.083 |
Daily Tour Income | 1.636240094 | 0.174984653 | 9.350763 | 1.00186E-12 | 1.285107699 | 1.987372 | 1.285108 | 1.987372 |