In: Math
A hand of 13 cards is dealt from a standard deck of 52 playing cards. What is the probability that it contains more spades (♠) than hearts (♡) given that the hand contains at least two spades?
Answer:
Given that 13 cards drawn from deck of 52.
Here condition is spades count shouldbe more than hearts count in selection of 13.
So Let us consider Spades(S) = 13 , Hearts (H) = 13 and Remaining(R) = 26.
Number combinations to get 13 cards from 52 id (52 c 13) = 635013559600
Here Possibilities are
If R=0 in this 13,
7 Spades & 6 heart
8 Spades & 5 heart
9 Spades & 4 heart
10 Spades & 3 heart
11 Spades & 2 heart
12 Spades & 1 heart
13 Spades & 0 heart
We have 7 chances.
If R=1, so S + H = 12 and S > H.
7 Spades & 5 heart
8 Spades & 4 heart
9 Spades & 3 heart
10 Spades & 2 heart
11 Spades & 1 heart
12 Spades & 0 heart
We have 6 chances.
If R=2, so S + H = 11 and S > H.
6 Spades & 5 heart
7 Spades & 4 heart
8 Spades & 3 heart
9 Spades & 2 heart
10 Spades & 1 heart
11 spades & 0 heart
we have 6 chances
If R = 3, so S + H = 10 and S > H.
6 Spades & 4 heart
7 Spades & 3 heart
8 Spades & 2 heart
9 Spades & 1 heart
10 spades & 0 heart
wE HAVE 5 chances
If R =4 , So S+ H= 9 and S > H.
5 Spades & 4 heart
6 Spades & 3 heart
7 Spades & 2 heart
8 Spades & 1 heart
9 spades & 0 heart
wE HAVE 5 chances
If R = 5, So S+ H= 8 and S > H.
5 Spades & 3 heart
6 Spades & 2 heart
7 Spades & 1 heart
8 spades & 0 heart
wE HAVE 4 chances
If R = 6, Then S + H =7 and S > H.
4 Spades & 3 heart
5 Spades & 2 heart
6 Spades & 1 heart
7 spades & 0 heart
wE HAVE 4 chances
If R = 7, then S + H = 6 and S > H.
4 Spades & 2 heart
5 Spades & 1 heart
6 spades & 0 heart
wE HAVE 3 chances
If R = 8, then S + H= 5 and S > H.
3 Spades & 2 heart
4 Spades & 1 heart
5 spades & 0 heart
wE HAVE 3 chances
If R = 9, then S + H= 4 and S > H.
3 Spades & 1 heart
4 Spades & 0 heart
wE HAVE 2 chances
If R = 10, then S + H= 3 and S > H.
2 Spades & 1 heart
3 Spades & 0 heart
wE HAVE 2 chances
If R = 11 then S + H = 2 and S > H.
2 Spades & 0 heart
wE HAVE 1 chances
If R = 12 then S + H = 1 and S > H.
1 Spades & 0 heart
wE HAVE 1 chances
If R = 13 then S + H = 0 and S > H.
No chance
wE HAVE 0 chances
So total selection P(R=0)+ P(R=1) +.....+ P(R=13)
= 7 +6+6+5+5+4+4+3+3+2+2+1+1+0
= 49
P(X) = 49/635013559600