Question

In: Operations Management

Consider the following LP model.Max  Z = 3x1 - 4x2 + x3 subject to     x1 + x2 +...

Consider the following LP model.Max  Z = 3x1 - 4x2 + x3

subject to     x1 + x2 + x3 >= 9

           2x1 + x2 + x3<= 12

x1 + x2         = 5

      x1, x2, x3 >= 0

  1. Change it to standard form.

  1. Obtain all the basic solutions and indicate which ones are basic feasible solutions and write down the corresponding corner points. For each basic solution, you have to obtain the values of all the variables.

  1. Obtain the solution of the LP problem, that is, obtain the values of the decision variables corresponding to the optimal solution as well as the optimal value of the objective function.

Solutions

Expert Solution

Please find attached the solution below.


Related Solutions

Given the following LP max z = 2x1 + x2 + x3 s. t. 3x1 -...
Given the following LP max z = 2x1 + x2 + x3 s. t. 3x1 - x2 <= 8 x2 +x3 <= 4 x1,x3 >= 0, x2 urs (unrestricted in sign) A. Reformulate this LP such that 1)All decision variables are non-negative. 2) All functional constraints are equality constraints B. Set up the initial simplex tableau. C. Determine which variable should enter the basis and which variable should leave.
Consider the following linear optimization model. Z = 3x1+ 6x2+ 2x3 st       3x1 +4x2 + x3...
Consider the following linear optimization model. Z = 3x1+ 6x2+ 2x3 st       3x1 +4x2 + x3 ≤2            x1+ 3x2+ 2x3 ≤ 1       X1, x2, x3 ≥0                (10) Write the optimization problem in standard form with the consideration of slack variables.                (30) Solve the problem using simplex tableau method.                (10) State the optimal solution for all variables.
Maximize Z= 3 X1+4 X2+2.5X3 Subject to 3X1+4X2+2X3≤500 2X1+1X2+2X3≤400 1X1+3X2+3X3≤300 X1,X2,X3≥0 Change objective function coeffiecient x3...
Maximize Z= 3 X1+4 X2+2.5X3 Subject to 3X1+4X2+2X3≤500 2X1+1X2+2X3≤400 1X1+3X2+3X3≤300 X1,X2,X3≥0 Change objective function coeffiecient x3 to 6 and change coefficient of x3 to 5in constraint 1 ,to 2 in constraint 2 ,to 4 in constraint3. calculate new optimal solution using sensitivity analysis
Consider the following linear programming problem. min −x1 + 4x2 subject to: • x1 + x2...
Consider the following linear programming problem. min −x1 + 4x2 subject to: • x1 + x2 ≥ 1 • 3x1 + x2 ≤ .5 • x1, x2 ≥ 0 Formulate the dual of this problem.
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0...
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0 Solve the problem by using the M-technique.
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2...
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2 <= 13 x1 - x2 <= 8 - x1 + x2 <= 2 -3 <= x1 <= 8 -5 <= x2 <= 4 Starting with x1 and x2 nonbasic at their lower bounds, perform ONE iteration of the Bounded Variables Revised Simplex Method. (Tableau or matrix form is acceptable). Show your work. Clearly identify the entering and leaving variables. After the pivot, identify the...
Solve the following linear programming model graphically: Max Z= 3x1 +4x2 Subject to: 2x1 + 4x2...
Solve the following linear programming model graphically: Max Z= 3x1 +4x2 Subject to: 2x1 + 4x2 <= 22 -x1 + 4x2 <= 10 4x1 – 2x2 <= 14 x1 – 3x2 <= 1 x1, x2, >=0 Clearly identify the feasible region, YOUR iso-profit line and the optimal solution (that is, d.v. values and O.F. Value.
Consider the linear system of equations below 3x1 − x2 + x3 = 1 3x1 +...
Consider the linear system of equations below 3x1 − x2 + x3 = 1 3x1 + 6x2 + 2x3 = 0 3x1 + 3x2 + 7x3 = 4 i. Use the Gauss-Jacobi iterative technique with x (0) = 0 to find approximate solution to the system above up to the third step ii. Use the Gauss-Seidel iterative technique with x (0) = 0 to find approximate solution to the third step
Consider the following Integer Linear Programming (ILP) model Maximize Z = X1 + 4X2 Subject to...
Consider the following Integer Linear Programming (ILP) model Maximize Z = X1 + 4X2 Subject to X1 + X2 < 7 // Resource 1 –X1 + 3X2 < 3 // Resource 2 X1, X2 > 0 X1, X2 are integer i. Consider using the Branch and Bound (B & B) technique to solve the ILP model. With the help of Tora software, draw the B & B tree. Always give priority for X1 in branching over X2. Clearly label the...
Find the set of ALL optimal solutions to the following LP: min z= 3x1−2x2 subject to...
Find the set of ALL optimal solutions to the following LP: min z= 3x1−2x2 subject to 3x1+x2≤12 3x1−2x2−x3= 12 x1≥2 x1, x2, x3≥0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT