In: Computer Science
Convert the following hexadecimal representations of 16-bit 2’s complement binary numbers to decimal.
a.FCAD
b.DEAD
c.1111
d.8000
e.FACE
Hexadecimal Binary 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 A 1010 B 1011 C 1100 D 1101 E 1110 F 1111 Use this table to convert from hexadecimal to binary a) Converting FCAD to binary F => 1111 C => 1100 A => 1010 D => 1101 So, in binary FCAD is 1111110010101101 since left most bit is 1, this number is negative number. so, follow these steps below to convert this into a decimal value. I. first flip all the bits. Flip all 0's to 1 and all 1's to 0. 1111110010101101 is flipped to 0000001101010010 II. Add 1 to above result 0000001101010010 + 1 = 0000001101010011 III. Now convert this result to decimal value => 1101010011 => 1x2^9+1x2^8+0x2^7+1x2^6+0x2^5+1x2^4+0x2^3+0x2^2+1x2^1+1x2^0 => 1x512+1x256+0x128+1x64+0x32+1x16+0x8+0x4+1x2+1x1 => 512+256+0+64+0+16+0+0+2+1 => 851 Answer: -851 b) Converting DEAD to binary D => 1101 E => 1110 A => 1010 D => 1101 So, in binary DEAD is 1101111010101101 since left most bit is 1, this number is negative number. so, follow these steps below to convert this into a decimal value. I. first flip all the bits. Flip all 0's to 1 and all 1's to 0. 1101111010101101 is flipped to 0010000101010010 II. Add 1 to above result 0010000101010010 + 1 = 0010000101010011 III. Now convert this result to decimal value => 10000101010011 => 1x2^13+0x2^12+0x2^11+0x2^10+0x2^9+1x2^8+0x2^7+1x2^6+0x2^5+1x2^4+0x2^3+0x2^2+1x2^1+1x2^0 => 1x8192+0x4096+0x2048+0x1024+0x512+1x256+0x128+1x64+0x32+1x16+0x8+0x4+1x2+1x1 => 8192+0+0+0+0+256+0+64+0+16+0+0+2+1 => 8531 Answer: -8531 c) Converting 1111 to binary 1 => 0001 1 => 0001 1 => 0001 1 => 0001 So, in binary 1111 is 0001000100010001 since left most bit is 0, this number is positive so, we can directly convert this into a decimal value => 1000100010001 => 1x2^12+0x2^11+0x2^10+0x2^9+1x2^8+0x2^7+0x2^6+0x2^5+1x2^4+0x2^3+0x2^2+0x2^1+1x2^0 => 1x4096+0x2048+0x1024+0x512+1x256+0x128+0x64+0x32+1x16+0x8+0x4+0x2+1x1 => 4096+0+0+0+256+0+0+0+16+0+0+0+1 => 4369 Answer: 4369 d) Converting 8000 to binary 8 => 1000 0 => 0000 0 => 0000 0 => 0000 So, in binary 8000 is 1000000000000000 since left most bit is 1, this number is negative number. so, follow these steps below to convert this into a decimal value. I. first flip all the bits. Flip all 0's to 1 and all 1's to 0. 1000000000000000 is flipped to 0111111111111111 II. Add 1 to above result 0111111111111111 + 1 = 1000000000000000 III. Now convert this result to decimal value => 1000000000000000 => 1x2^15+0x2^14+0x2^13+0x2^12+0x2^11+0x2^10+0x2^9+0x2^8+0x2^7+0x2^6+0x2^5+0x2^4+0x2^3+0x2^2+0x2^1+0x2^0 => 1x32768+0x16384+0x8192+0x4096+0x2048+0x1024+0x512+0x256+0x128+0x64+0x32+0x16+0x8+0x4+0x2+0x1 => 32768+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0 => 32768 Answer: -32768 e) Converting FACE to binary F => 1111 A => 1010 C => 1100 E => 1110 So, in binary FACE is 1111101011001110 since left most bit is 1, this number is negative number. so, follow these steps below to convert this into a decimal value. I. first flip all the bits. Flip all 0's to 1 and all 1's to 0. 1111101011001110 is flipped to 0000010100110001 II. Add 1 to above result 0000010100110001 + 1 = 0000010100110010 III. Now convert this result to decimal value => 10100110010 => 1x2^10+0x2^9+1x2^8+0x2^7+0x2^6+1x2^5+1x2^4+0x2^3+0x2^2+1x2^1+0x2^0 => 1x1024+0x512+1x256+0x128+0x64+1x32+1x16+0x8+0x4+1x2+0x1 => 1024+0+256+0+0+32+16+0+0+2+0 => 1330 Answer: -1330