Question

In: Chemistry

50 mL of .500 M NaOH is placed in a coffee-cup calorimeter at 25.00 degreees Celsius...

50 mL of .500 M NaOH is placed in a coffee-cup calorimeter at 25.00 degreees Celsius and 25 mL of .250 M H2SO4 is carefully added, also at 25.00 degrees Celsius. After stirring the final temperature is 27.21 degrees Celsius. Calculate q (soln) in J and the change in enthalpy, delta h in kj/mol of H2O formed. Assume that the total volume is the sum of the individual volumes, that d=1.00 g/mL, and that c= 4.184 J/g-k.

Solutions

Expert Solution

Given:

Volume of NaOH, VNaOH = 50 ml

Molarity of NaOH, MNaOH = 0.500 M

Volume of H2SO4, VH2SO4 = 25 ml

Molarity of H2SO4, MH2SO4 = 0.250 M

Initial temperature, T1 = 25oC

Final temperature, T2 = 27.21oC

specific heat, c = 4.184 J/goC

density, d = 1.00 g/ml

q = (specific heat) x (mass) x (change in temperature)

mass = density x total volume

total volume = 50 + 25 = 75 ml

q = 4.184 x (1 x 75)   x 2.21

q = 693.498 J

and q = 0.693 kJ

Balanced equation : NaOH + H2SO4 = H2O + Na2SO4

Given moles of NaOH = MNaOH x VNaOH/1000 = 0.500 X 50/1000 = 0.025 mol

Given moles of H2SO4 = MH2SO4 x VH2SO4/1000 = 0.250 x 25/ 1000 = 0.00625 mol

But as per the balanced equation for the particular reaction, 1 mol of H2SO4 reacts with 2 moles of NaOH. we are provided with 0.00625 mol of H2SO4 which reacts with 0.00625 X 2 = 0.0125 mol of NaOH (H2SO4 is the limiting reagent).

since the reaction is exothermic, we need to assign negative charge


Related Solutions

You place 59.7 ml of 0.605 M NaOH in a coffee- cup calorimeter at 25.00°C and...
You place 59.7 ml of 0.605 M NaOH in a coffee- cup calorimeter at 25.00°C and add 76 ml of 0.605 M HCl, also at 25.00°C. After stirring, the final temperature is 27.84°C. [Assume the total volume is the sum of the individual volumes and that the final solution has the same density (1.00 g/ml) and specific heat capacity (4.184 J/gK)]. Calculate the change in enthalpy of the reaction in kJ/mol of water formed. Enter to 1 decimal place. Hint:...
You place 41.8 ml of 0.541 M NaOH in a coffee- cup calorimeter at 25.00°C and...
You place 41.8 ml of 0.541 M NaOH in a coffee- cup calorimeter at 25.00°C and add 73.3 ml of 0.541 M HCl, also at 25.00°C. After stirring, the final temperature is 28.24°C. [Assume the total volume is the sum of the individual volumes and that the final solution has the same density (1.00 g/ml) and specific heat capacity (4.184 J/gK)]. Calculate the change in enthalpy (LaTeX: \DeltaΔH) of the reaction in kJ/mol of water formed. Enter to 1 decimal...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 7.10 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol. Express your answer with the appropriate units.
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 8.50 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol. Express your answer with the appropriate units.
Part A In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used....
Part A In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 4.00 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol. Express your answer with the appropriate units. Hints
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 4.90 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol.
For the titration of 25.00 mL of 0.1000 M HCl with 0.1000 M NaOH, calculate the...
For the titration of 25.00 mL of 0.1000 M HCl with 0.1000 M NaOH, calculate the pH of the reaction mixture after each of the following total volumes of base have been added to the original solution. (Remember to take into account the change in total volume.) Select a graph showing the titration curve for this experiment. (a) 0 mL (b) 10.00 mL (c) 24.90 mL (d) 24.99 mL (e) 25.00 mL (f) 25.01 mL (g) 25.10 mL (h) 26.00...
In a calorimeter, we added 50 mL of 1M HCl to 50 mL of 1.1 M...
In a calorimeter, we added 50 mL of 1M HCl to 50 mL of 1.1 M NH3 which produces NH4Cl. If the temperature increased 5.0 degrees Celsius, what is the molar enthalpy? We weren't given a heat capacity for the calorimeter but it was made out of a glass beaker and the heat capacity of glass is 0.840 J/goC found on google.
In the laboratory a"coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine the...
In the laboratory a"coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine the specific heat of a solid, or to measure the energy of a solution phase reaction. A student heats65.62grams ofzincto98.24 °C and then drops it into a cup containing75.87grams of water at23.87 °C. She measures the final temperature to be29.24 °C. The heat capacity of the calorimeter (sometimes referred to as thecalorimeter constant) was determined in a separate experiment to be1.54J/°C. Assuming that no heat...
In a coffee-cup calorimeter experiment, if we ignored the heat lost to the Styrofoam cup and...
In a coffee-cup calorimeter experiment, if we ignored the heat lost to the Styrofoam cup and the air, does this cause the heat gained by the total solution at the end to be too big or too small. Could you please explain.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT