Question

In: Advanced Math

Let L be the line parametrically by~r(t) = [1 + 2t,4 +t,2 + 3t] and M...

Let L be the line parametrically by~r(t) = [1 + 2t,4 +t,2 + 3t] and M be the line through the points P= (−5,2,−3) and Q=(1,2,−6).

a) The lines L and M intersect; find the point of intersection.

b) How many planes contain both lines?

c) Give a parametric equation for a plane Π that contains both lines

Solutions

Expert Solution


Related Solutions

Consider the helix r(t)=(cos(2t),sin(2t),−3t)r(t)=(cos(2t),sin(2t),−3t). Compute, at t=π/6 A. The unit tangent vector T=T= ( , ,...
Consider the helix r(t)=(cos(2t),sin(2t),−3t)r(t)=(cos(2t),sin(2t),−3t). Compute, at t=π/6 A. The unit tangent vector T=T= ( , , ) B. The unit normal vector N=N= ( , , ) C. The unit binormal vector B=B= ( , , ) D. The curvature κ=κ=
Let r(t) = 2t ,4t2 ,2t be a position function for some object. (a) (2 pts)...
Let r(t) = 2t ,4t2 ,2t be a position function for some object. (a) (2 pts) Find the position of the object at t = 1. (b) (6 pts) Find the velocity of the object at t = 1. (c) (6 pts) Find the acceleration of the object at t = 1. (d) (6 pts) Find the speed of the object at t = 1. (e) (15 pts) Find the curvature K of the graph C determined by r(t) when...
Let r(t) = (cos(πt), sin(πt), 3t). Calculate r'(t), T(t) and evaluate T(1).
Let r(t) = (cos(πt), sin(πt), 3t). Calculate r'(t), T(t) and evaluate T(1).
Find the curvature of the parametrized curve ~r(t) =< 2t 2 , 4 + t, −t...
Find the curvature of the parametrized curve ~r(t) =< 2t 2 , 4 + t, −t 2 >.
Let r : R->R3 be a path with constant speed, satisfying r"(t) = (4 sin(2t))i +...
Let r : R->R3 be a path with constant speed, satisfying r"(t) = (4 sin(2t))i + (-4 cos t)j + (4 cos(2t))k for all t belongs to R: Find the curvature w.r.t. t of r. (Hint: cos(2t), sin(2t), and cos(t) are linearly independent. i.e. if c1cos(2t) + c2sin(2t)+ c3cos(t) = 0 for all t belongs to R, then c1 = c2 = c3 = 0.)
Using limit to find the equation of the tangent line to the curve y = f(t)=2t^3+3t...
Using limit to find the equation of the tangent line to the curve y = f(t)=2t^3+3t at the point Q(1,5)
Given r(t) = <2 cos(t), 2 sin(t), 2t>. • What is the arc length of r(t)...
Given r(t) = <2 cos(t), 2 sin(t), 2t>. • What is the arc length of r(t) from t = 0 to t = 5. SET UP integral but DO NOT evaluate • What is the curvature κ(t)?
Question1:x=2-t, y=3-2t, z=4-3t a) Explain why the work done by a force field ?(?, ?, ?)...
Question1:x=2-t, y=3-2t, z=4-3t a) Explain why the work done by a force field ?(?, ?, ?) is the line integral ∫c ? ∙ ?? where C is a curve defined by ?(?) = ?(?) ? + ?(?)? + ?(?)? b) Find the work done by the force field ?(?, ?) = −?? + ?? on a particle moving along the straight line y = 2x + 3 from A(0,3) to B(1,5)
4. Let r(?) = �?, 4 3 ? 3/2, ?2 �. (a) Find T, N, and...
4. Let r(?) = �?, 4 3 ? 3/2, ?2 �. (a) Find T, N, and B at the point corresponding to ? = 1. (b) Find the equation of the osculating plane at the point corresponding to ? = 1. (c) Find the equation of the normal plane at the point corresponding to ? = 1
given the curve x(t)=t^2+3 and y(t)=2t^3-3t^2 find the following: a.) find the derivative of the curve...
given the curve x(t)=t^2+3 and y(t)=2t^3-3t^2 find the following: a.) find the derivative of the curve at t=1 b.) dind the concavity of the curve c.) graph the curve from t=0 to t=2 d.) find the area if the curve on the interval 0<=t<=2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT