In: Economics
An important application of regression analysis in accounting is in the estimation of cost. By collecting data on volume and cost and using the least squares method to develop an estimated regression equation relating volume and cost, an accountant can estimate the cost associated with a particular manufacturing volume. Consider the following sample of production volumes and total cost data for a manufacturing operation.
Production Volume (units) | Total Cost ($) |
400 | 4,800 |
450 | 5,800 |
550 | 6,200 |
600 | 6,700 |
700 | 7,200 |
750 | 7,800 |
Using the Data analysis in excel. Y value as TC and X values as production volume. | ||||||||||||
SUMMARY OUTPUT | ||||||||||||
Regression Statistics | ||||||||||||
Multiple R | 0.979127 | |||||||||||
R Square | 0.95869 | |||||||||||
Adjusted R Square | 0.948362 | |||||||||||
Standard Error | 241.5229 | |||||||||||
Observations | 6 | |||||||||||
ANOVA | ||||||||||||
df | SS | MS | F | Significance F | ||||||||
Regression | 1 | 5415000 | 5415000 | 92.82857 | 0.000649 | |||||||
Residual | 4 | 233333.3 | 58333.33 | |||||||||
Total | 5 | 5648333 | ||||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |||||
Intercept(b0) | 2046.667 | 464.1599 | 4.4094 | 0.011606 | 757.9521 | 3335.381 | 757.9521 | 3335.381 | ||||
x(b1) | 7.6 | 0.788811 | 9.634759 | 0.000649 | 5.409911 | 9.790089 | 5.409911 | 9.790089 | ||||
a) b1 = slope coefficient = 7.6 | ||||||||||||
b0 = intercept = 2046.7 | ||||||||||||
estimated regression: | ||||||||||||
y = 2046.7 + 7.6x | ||||||||||||
y = Total cost | ||||||||||||
x = production volume | ||||||||||||
b) variable cost (b1) = $7.6 per unit | ||||||||||||
c) r2 = 0.959. | ||||||||||||
Percentage of variation in total cost can be explained by the production volume = 95.9% | ||||||||||||
d) x = 500. | ||||||||||||
y = 2046.7 + 7.6*500 = $5846.7 = $5847 | ||||||||||||