This is a numerical methods question using MATLAB.
Which of the following code snippets finds the forward
difference estimate of the derivative at each of the x values.
Assume x and y have been previously defined, for example as
y=[10,20,25, 27.5, 30];
x = [0.3,0.5, 0.8, 0.9, 1];
(d is the derivative variable name)
Although not necessarily so, there may be more than one correct
answer.
a)
for k=1:length(y)-1
d(k)=(y(k+1)-y(k))/(x(k+1)-x(k));
end
d(k+1)=NaN
b)
for k=1:length(y)
d(k)=(y(k+1)-y(k))/(x(k+1)-x(k));
end
c)
d(1)=NaN;
for...