Question

In: Civil Engineering

The rock from a 3 m radius vertical shaft 412,98 m deep is to be dumped...

The rock from a 3 m radius vertical shaft 412,98 m deep is to be dumped on level ground.
The base diameter of the dump is limited to 60 m; the angle of repose of rock = 37°. The ratio of broken to in situ rock = 3:5.
The dump is to be levelled on the top when the shaft is completed.
Calculate:
a) The volume of rock to be dumped.
b) The vertical height of the completed dump.
c) The top area of the dump if the height is 11.513 m.

Solutions

Expert Solution

In case of any doubt please ask in comment.

Please rate. Thank You


Related Solutions

1. A rock is thrown downward into a well that is 8.70 m deep. If the...
1. A rock is thrown downward into a well that is 8.70 m deep. If the splash is heard 1.10 seconds later, what was the initial speed of the rock? Take the speed of sound in the air to be 343 m/s. 2. A bird-watcher is hoping to add the white-throated sparrow to her "life list" of species. Person, only 1.00 m from the bird, hears the sound with an intensity of 2.68×10?5 W/m2 . How far could she be...
A disk of radius a and mass m is suspended at its centre by a vertical...
A disk of radius a and mass m is suspended at its centre by a vertical torsion wire which exerts a couple -cθ on the disk when it is twisted through an angle θ from its equilibrium position. Show that oscillations of the disk are simple harmonic, and obtain an expression for the period. A wire ring of mass m and radius a/2 is dropped concentrically onto the disk and sticks to it. Calculate the changes to (a) the period...
A vertical shaft Kaplan turbine operating under a head of 9.8 m has a runner diameter...
A vertical shaft Kaplan turbine operating under a head of 9.8 m has a runner diameter of 9.3 m. At the maximum optimum point, the turbine runs at 51.7 rpm and develops 45,000 kW power discharging 535 m 3 /s water. Determine the values of unit speed, unit discharge, unit power and specific speed of the turbine. If the critical value of cavitation coefficient for the runner is 0.95, determine the location of the runner with respect to the tail...
A rock is thrown with an initial vertical velocity component of 30 m/s and an initial...
A rock is thrown with an initial vertical velocity component of 30 m/s and an initial horizontal velocity component of 40 m/s. a. What will these velocity components be one second after the rock reaches the top of its path? b. Assuming the launch and landing heights are the same, how long will the rock be in the air? c. Assuming the launch and landing heights are the same, how far will the rock land from where it was thrown?...
A bathysphere used for deep-sea exploration has a radius of 1.52 m and a mass of...
A bathysphere used for deep-sea exploration has a radius of 1.52 m and a mass of 1.16 ✕ 104 kg. To dive, this submarine takes on mass in the form of sea water. Determine the amount of mass that the submarine must take on if it is to descend at a constant speed of 1.40 m/s, when the resistive force on it is 1101 N in the upward direction. The density of seawater is 1.03 ✕ 103 kg/m3. Also, A...
A solid disk of mass M and radius R is rotating on the vertical axle with...
A solid disk of mass M and radius R is rotating on the vertical axle with angular speed w. Another disk of mass M/2 and radius R, initally not rotating, falls coaxially on the disk and sticks. The rotational velocity of this system after collision is: w w/2 2w/3 3w/2 2w
a uniform spherical shell of mass M and radius R rotates about a vertical axis on...
a uniform spherical shell of mass M and radius R rotates about a vertical axis on frictionless bearing. A massless cord passes around the equator of the shell, over a pulley of rotational inertia I and radius r, and is attached to a small object of mass m. There is no friction on the pulley's axle; the cord does not slip on the pulley. What is the speed of the object after it has fallen a distance h from rest?...
A small block with mass 0.0550 kg slides in a vertical circle of radius 0.0740 m...
A small block with mass 0.0550 kg slides in a vertical circle of radius 0.0740 m on the inside of a circular track. There is no friction between the track and the block. At the bottom of the block's path, the normal force the track exerts on the block has magnitude 3.40 N Part A What is the magnitude of the normal force that the track exerts on the block when it is at the top of its path?
A small block with mass 0.0400 kg slides in a vertical circle of radius 0.500 m...
A small block with mass 0.0400 kg slides in a vertical circle of radius 0.500 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 4N . In this same revolution, when the block reaches the top of its path, point B, the magnitude of the normal...
A small block with mass 0.0475 kg slides in a vertical circle of radius 0.600 m...
A small block with mass 0.0475 kg slides in a vertical circle of radius 0.600 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 3.90 N . In this same revolution, when the block reaches the top of its path, point B, the magnitude of the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT