In a question involving a hypothesis test having the population mean as the target parameter, you are given the sample size, n, the assumed population mean, the significance of the test, alpha, whether it is a right-tailed, left-tailed, or two-tailed test, and the result of the test (reject or do not reject the null hypothesis.)
Show how you can use this information to find bounds on the sample itself. You may put in simple values for the information given if your prefer that to working directly with the formulas.
Suppose you were also given the P-value. Show how to obtain the test statistic from this, and the sample mean itself.
In: Math
In another case –control study researchers investigated cleft lip with or without cleft palate by smoking status in those participants who reported consuming folic acid supplements. In this sub-group there were 42 cases of cleft lip with or without cleft palate and 55 controls who were current smokers; and there were 72 cases of cleft lip with or without cleft palate and 190 controls who were non-smokers.”
(a) “Construct a 2x2 table with columns and rows headings and calculate an appropriate measure of the strength of association between smoking and cleft lip with or without cleft palate in those who consumed folic acid supplements during pregnancy.” [4 marks]
b) “Interpret the findings in (a) in your own words.” [2 marks]
c) “What proportion of cleft lip with or without cleft palate in the population is potentially preventable, assuming a causal association between smoking and cleft lip.”[4 marks] explain in words your findings
In: Math
Using the following sample data; 6, 7, 11, 6, 11, 5, 15, 11, 5;
Compute the sample standard deviation using either the computing formula or the defining formula.
| A. |
3.6 |
|
| B. |
3.5 |
|
| C. |
3.4 |
|
| D. |
3.3 |
In: Math
Given are five observations for two variables, and .
| 3 | 6 | 12 | 17 | 20 | |
| 59 | 54 | 47 | 14 | 16 |
The estimated regression equation for these data is y = 70.84 - 2.83x
a. Compute SST, SSE , and SSR.
| (to 2 decimals) | |
| (to 2 decimals) | |
| (to 2 decimals) |
b. Compute the coefficient of determination r^2. Comment on the goodness of fit.
(to 3 decimals)
The least squares line provided an - Select your answer -goodbadItem 5 fit; of the variability in has been explained by the estimated regression equation (to 1 decimal).
c. Compute the sample correlation coefficient. Enter negative value as negative number.
(to 3 decimals)
In: Math
El documento de Excel anexo presenta las estadísticas de criminalidad en una ciudad. También se presentan otros datos importantes a cerca de educación. El propósito de este ejercicio es crear dos modelos de regresión lineal múltiple donde se trate de predecir: a) Y1 usando como predictores X3,X5,X6 b) Y2 usando como predictores X3,X4,X7 En cada caso se necesita: 1. El modelo (todos los coeficientes beta) y la interpretación de cada coeficiente. 2. Cuan significativos son cada uno de los coeficientes 3. El coeficiente de determinación del modelo (R cuadrado) 4. La interpretación de R cuadrado 5. En el caso (a) prediga: Cuál será la tasa de crímenes totales reportados por milón de habitantes si se asignan 50 dólares anuales por habitante a la policía, hay un 10% de jóvenes entre 16 y 19 años que no asisten a la escuela superior (ni la han finalizado) y hay un 50% de jóvenes entre 18 y 24 años que asisten a la universidad. 6. En el caso (b) prediga: Cuántos crímenes de violencia se reportarán si se asignan 20 dólares anuales por habitante a la policía, hay 60% de personas de más de 25 años que finalizaron la escuela superior y hay un 5% de personas de 25 años o más que lograron una carrera universitaria de 4 años. 7. Luego de hacer todo este análisis arroje conclusiones prácticas acerca de los hallazgos hechos en esta ciudad. 8. Si usted es un consejero para las autoridades de esa ciudad, por favor escriba un parrafo de recomendaciones a seguir para tratar de reducir la criminalidad. ABAJO APARECEN CIERTAS FÓRMULAS QUE LE PUEDE SER DE UTILIDAD, AUNQUE LA RECOMENDACIÓN QUE RESUELVA TODO EL PROBLEMA USANDO R Y/O EXCEL PARA EL MISMO.
| Y1 | Y2 | X3 | X4 | X5 | X6 | X7 | Y1 = Crímenes totales reportados por millón de habitantes | |||||||||
| 478 | 184 | 40 | 74 | 11 | 31 | 20 | Y2 = Crímenes de violencia reportados por cada 100,000 habitantes | |||||||||
| 494 | 213 | 32 | 72 | 11 | 43 | 18 | X3 = Presupuesto anual para la policía dólares por habitante | |||||||||
| 643 | 347 | 57 | 70 | 18 | 16 | 16 | X4 = % de personas de 25 años o más que finalizaron la escuela superior (high school) | |||||||||
| 341 | 565 | 31 | 71 | 11 | 25 | 19 | X5 = % de jovenes entre 16 y 19 años que no asisten a la escuela superior ni se han graduado de ella. | |||||||||
| 773 | 327 | 67 | 72 | 9 | 29 | 24 | X6 = % de jóvenes de 18 a 24 años que asisten a la universidad | |||||||||
| 603 | 260 | 25 | 68 | 8 | 32 | 15 | X7 = % de personas con 25 años o más que lograron una carrera universitaria de 4 años | |||||||||
| 484 | 325 | 34 | 68 | 12 | 24 | 14 | ||||||||||
| 546 | 102 | 33 | 62 | 13 | 28 | 11 | ||||||||||
| 424 | 38 | 36 | 69 | 7 | 25 | 12 | ||||||||||
| 548 | 226 | 31 | 66 | 9 | 58 | 15 | ||||||||||
| 506 | 137 | 35 | 60 | 13 | 21 | 9 | ||||||||||
| 819 | 369 | 30 | 81 | 4 | 77 | 36 | ||||||||||
| 541 | 109 | 44 | 66 | 9 | 37 | 12 | ||||||||||
| 491 | 809 | 32 | 67 | 11 | 37 | 16 | ||||||||||
| 514 | 29 | 30 | 65 | 12 | 35 | 11 | ||||||||||
| 371 | 245 | 16 | 64 | 10 | 42 | 14 | ||||||||||
| 457 | 118 | 29 | 64 | 12 | 21 | 10 | ||||||||||
| 437 | 148 | 36 | 62 | 7 | 81 | 27 | ||||||||||
| 570 | 387 | 30 | 59 | 15 | 31 | 16 | ||||||||||
| 432 | 98 | 23 | 56 | 15 | 50 | 15 | ||||||||||
| 619 | 608 | 33 | 46 | 22 | 24 | 8 | ||||||||||
| 357 | 218 | 35 | 54 | 14 | 27 | 13 | ||||||||||
| 623 | 254 | 38 | 54 | 20 | 22 | 11 | ||||||||||
| 547 | 697 | 44 | 45 | 26 | 18 | 8 | ||||||||||
| 792 | 827 | 28 | 57 | 12 | 23 | 11 | ||||||||||
| 799 | 693 | 35 | 57 | 9 | 60 | 18 | ||||||||||
| 439 | 448 | 31 | 61 | 19 | 14 | 12 | ||||||||||
| 867 | 942 | 39 | 52 | 17 | 31 | 10 | ||||||||||
| 912 | 1017 | 27 | 44 | 21 | 24 | 9 | ||||||||||
| 462 | 216 | 36 | 43 | 18 | 23 | 8 | ||||||||||
| 859 | 673 | 38 | 48 | 19 | 22 | 10 | ||||||||||
| 805 | 989 | 46 | 57 | 14 | 25 | 12 | ||||||||||
| 652 | 630 | 29 | 47 | 19 | 25 | 9 | ||||||||||
| 776 | 404 | 32 | 50 | 19 | 21 | 9 | ||||||||||
| 919 | 692 | 39 | 48 | 16 | 32 | 11 | ||||||||||
| 732 | 1517 | 44 | 49 | 13 | 31 | 14 | ||||||||||
| 657 | 879 | 33 | 72 | 13 | 13 | 22 | ||||||||||
| 1419 | 631 | 43 | 59 | 14 | 21 | 13 | ||||||||||
| 989 | 1375 | 22 | 49 | 9 | 46 | 13 | ||||||||||
| 821 | 1139 | 30 | 54 | 13 | 27 | 12 | ||||||||||
| 1740 | 3545 | 86 | 62 | 22 | 18 | 15 | ||||||||||
| 815 | 706 | 30 | 47 | 17 | 39 | 11 | ||||||||||
| 760 | 451 | 32 | 45 | 34 | 15 | 10 | ||||||||||
| 936 | 433 | 43 | 48 | 26 | 23 | 12 | ||||||||||
| 863 | 601 | 20 | 69 | 23 | 7 | 12 | ||||||||||
| 783 | 1024 | 55 | 42 | 23 | 23 | 11 | ||||||||||
| 715 | 457 | 44 | 49 | 18 | 30 | 12 | ||||||||||
| 1504 | 1441 | 37 | 57 | 15 | 35 | 13 | ||||||||||
| 1324 | 1022 | 82 | 72 | 22 | 15 | 16 | ||||||||||
| 940 | 1244 | 66 | 67 | 26 | 18 | 16 | ||||||||||
In: Math
Describe in 175 words please type response:
Describe statistical inference and how it corralates with hypothesis testing for single populations.
Describe in 175 words please type response:
Describe how decision making is done using one sample hypothesis testing.
In: Math
In: Math
Suppose that you decide to randomly sample people ages 18-24 in your county to determine whether or not they are registered to vote. In your sample of 50 people, 35 said they were registered to vote. a) (2 points) Find a 95% confidence interval for the true proportion of the county population ages 18-24 who are registered to vote. Make sure to check any necessary conditions and to state a conclusion in the context of the problem. Also, explain what 95% confidence means in this context. b) (1 point) What is the probability that the true proportion of people ages 18-24 who registered to vote in your county is in your particular confidence interval? (Note: Be careful). c) (1 point) According to a separate news report, about 73% of 18- to 24-year-olds in the same county said that they were registered to vote. Does the 73% figure seem reasonable with your own poll? Explain. d) (1 point) Assume you have not done your poll yet, but you knew the news report poll results. In designing your poll now, you want separately estimate the same percentage to within ±4 percentage points with 95% confidence, how many people should you poll?
In: Math
Consider a sample with data values of 26, 25, 20, 15, 31, 33, 29, and 25. Compute the 20th, 25th, 65th, and 75th percentiles.
20th percentile
25th percentile
65th percentile
75th percentile
In: Math
In: Math
One thousand cars were stopped at random for a roadside test of tyres and lights: 115 had unroadworthy tyres; and 46 had a lighting fault. These figures include 22 cars with both defects. If drivers had been fined $100 if their car had one defect, and $500 if their car had both defects, how much revenue would have been raised per car?
In: Math
According to the latest financial reports from a sporting goods store, the mean sales per customer was $75 with a population standard deviation of $6. The store manager believes 39 randomly selected customers spent more per transaction.
What is the probability that the sample mean of sales per
customer is between $76 and $77 dollars?
You may use a calculator or the portion of the z -table
given below. Round your answer to two decimal places if
necessary.
| z | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
| 1.0 | 0.841 | 0.844 | 0.846 | 0.848 | 0.851 | 0.853 | 0.855 | 0.858 | 0.860 | 0.862 |
| 1.1 | 0.864 | 0.867 | 0.869 | 0.871 | 0.873 | 0.875 | 0.877 | 0.879 | 0.881 | 0.883 |
| 1.2 | 0.885 | 0.887 | 0.889 | 0.891 | 0.893 | 0.894 | 0.896 | 0.898 | 0.900 | 0.901 |
| 1.3 | 0.903 | 0.905 | 0.907 | 0.908 | 0.910 | 0.911 | 0.913 | 0.915 | 0.916 | 0.918 |
| 1.4 | 0.919 | 0.921 | 0.922 | 0.924 | 0.925 | 0.926 | 0.928 | 0.929 | 0.931 | 0.932 |
| 1.5 | 0.933 | 0.934 | 0.936 | 0.937 | 0.938 | 0.939 | 0.941 | 0.942 | 0.943 | 0.944 |
| 1.6 | 0.945 | 0.946 | 0.947 | 0.948 | 0.949 | 0.951 | 0.952 | 0.953 | 0.954 | 0.954 |
| 1.7 | 0.955 | 0.956 | 0.957 | 0.958 | 0.959 | 0.960 | 0.961 | 0.962 | 0.962 | 0.963 |
| 1.8 | 0.964 | 0.965 | 0.966 | 0.966 | 0.967 | 0.968 | 0.969 | 0.969 | 0.970 | 0.971 |
| 1.9 | 0.971 | 0.972 | 0.973 | 0.973 | 0.974 | 0.974 | 0.975 | 0.976 | 0.976 | 0.977 |
| 2.0 | 0.977 | 0.978 | 0.978 | 0.979 | 0.979 | 0.980 | 0.980 | 0.981 | 0.981 | 0.982 |
| 2.1 | 0.982 | 0.983 | 0.983 | 0.983 | 0.984 | 0.984 | 0.985 | 0.985 | 0.985 | 0.986 |
| 2.2 | 0.986 | 0.986 | 0.987 | 0.987 | 0.987 | 0.988 | 0.988 | 0.988 | 0.989 | 0.989 |
$\mu_{\overline{x}}=$ $
sigma sub line segment x is equal to $\sigma_{\overline{x}}=$
$
cap p times open paren 76 is less than or equal to line segment x comma line segment x is less than or equal to 77 close paren is equal to $P\left(76\le\overline{x}\le77\right)=$
In: Math
Assume adult IQ scores are normally distributed with a mean of 100 and a standard deviation of 15
a) What is the probability that a randomly selected adult has an IQ that is less than 115
b) Find the probability that an adult has an IQ greater than 131.5 (requirement to join MENSA)
c) Find the probability that a randomly selected adult has an IQ between 110 and 120
d) Find the IQ separating the top 15% from the others e) Find the IQ score separating the bottom 10% from the others
In: Math
In a statistic class, 11 scores were randomly selected with the following results were obtained: 68, 74, 66, 37, 52, 71, 90, 65, 76, 73, 22. What are the outer fences?
A)-6.0, 140.0
B)-10.0, 92.0
C)2.0, 128.0
D)2.0, 162.0
E)37.0, 107.0
In: Math
This question will be perfomed entirely in R. Consider the following sample from an unkown distribution:
sample_data <- c(1.15, 0.5, 28.03 , 0.085, 1.82, 25.30, 0.7, 0.02, 0.01 ,13.23)
1.a) Calculating the p-value using the bootstrap hypothesis testing method to determine whether the mean is greater than 1 (one-sided test). Use 10,000 bootstrap samples. Set the seed to 248 before beginning the bootstrap process, i.e. include this line of code at the beginning of your script.
set.seed(248)
Include a histogram of the generated bootstrap samples of X̄⋆, does
it appear to be symmetric? Do you
reject the null at 0.05 significance level? (10 points)
1.b) Find the rejection region (for X̄) based on your bootstrap
samples at a 0.05 significance level. (5 points)
1.c) Perform a t-test for the same hypothesis as in 1.a) using the t.test function in R. Make sure that you apply the correct arguments.
Do you reject the null at a 0.05 significance level based on the t-test?
Compare the p-value from 1.a) to the p-value from the t-test, do they imply different conlcusion? Which p-value would you trust more? Support your anwser. (10 points)
In: Math