In: Statistics and Probability
If we could draw many random samples from the same population, and each time we ran the exact same regression, then we would get the same regression coefficients but different standard errors.
False
coefficients can also change
x <- rnorm(100)
e <- rnorm(100)
y <- 2*x + 5 + e
model <- lm(y~x)
summary(model)
running above code again, coefficients are different
Call: lm(formula = y ~ x) Residuals: Min 1Q Median 3Q Max -2.90224 -0.60599 0.06986 0.57724 2.61120 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 5.09043 0.09851 51.67 <2e-16 *** x 2.05151 0.09796 20.94 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.9848 on 98 degrees of freedom Multiple R-squared: 0.8174, Adjusted R-squared: 0.8155 F-statistic: 438.5 on 1 and 98 DF, p-value: < 2.2e-16 > x <- rnorm(100) > e <- rnorm(100) > y <- 2*x + 5 + e > model <- lm(y~x) > summary(model) Call: lm(formula = y ~ x) Residuals: Min 1Q Median 3Q Max -3.08156 -0.64059 -0.04581 0.66655 2.32896 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.97905 0.09979 49.90 <2e-16 *** x 1.79899 0.09973 18.04 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.9977 on 98 degrees of freedom Multiple R-squared: 0.7685, Adjusted R-squared: 0.7662 F-statistic: 325.4 on 1 and 98 DF, p-value: < 2.2e-16