In: Finance
A portfolio manager is considering the purchase of a bond with a 5.5% coupon rate that pays interest annually and matures in three years. If the required rate of return on the bond is 5%, the price of the bond per 100 of par value is closest to:
A) 101.36.
B) 98.65.
C) 106.43.
Please show the working process.
A) 101.36.
| Price of bond | = | =-pv(rate,nper,pmt,fv) | |||||||
| = | $ 101.36 | ||||||||
| Where, | |||||||||
| rate | 5% | ||||||||
| nper | 3 | ||||||||
| pmt | $ 5.50 | ||||||||
| fv | $ 100.00 | ||||||||
| Alternatively, | |||||||||
| Price of bond is the present value of cash flows from bond. | |||||||||
| Present value of coupon | $ 5.50 | x | 2.723248 | = | $ 14.98 | ||||
| Present value of Face value | $ 100.00 | x | 0.863838 | = | $ 86.38 | ||||
| Present value of cash flows | $ 101.36 | ||||||||
| So, price of bond is | $ 101.36 | ||||||||
| Working: | |||||||||
| Present value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | ||||||
| = | (1-(1+0.05)^-3)/0.05 | i | 5% | ||||||
| = | 2.723248 | n | 3 | ||||||
| Present value of 1 | = | 1.05^-3 | |||||||
| = | 0.863838 | ||||||||