Question

In: Advanced Math

A) Find Eigen values and Eigen vectors for the matrix below. A = ( 2 3...

A) Find Eigen values and Eigen vectors for the matrix below.

A = ( 2 3 ; 1 5 ) this is a 2x2 matrix with 2 3 on the first row and 1 5 on the second row

(B) Write down the spectral decomposition of the matrix A.

(C) Is the matrix A positive definite matrix? Why?

Solutions

Expert Solution


Related Solutions

Given a 2x2 matrix, A = 1 4 2 -1 Find its eigen values, eigen vectors....
Given a 2x2 matrix, A = 1 4 2 -1 Find its eigen values, eigen vectors. Can matrix be diagnolized?
Find the equilibrium vector for the transition matrix below. left bracket Start 3 By 3 Matrix...
Find the equilibrium vector for the transition matrix below. left bracket Start 3 By 3 Matrix 1st Row 1st Column 0.3 2nd Column 0.3 3rd Column 0.4 2nd Row 1st Column 0.2 2nd Column 0.4 3rd Column 0.4 3rd Row 1st Column 0.3 2nd Column 0.2 3rd Column 0.5 EndMatrix right bracket, The equilibrium vector is?
Given the vectors u1 = (2, −1, 3) and u2 = (1, 2, 2) find a...
Given the vectors u1 = (2, −1, 3) and u2 = (1, 2, 2) find a third vector u3 in R3 such that (a) {u1, u2, u3} spans R3 (b) {u1, u2, u3} does not span R3
Solve schroedinger's equation for a three dimensional harmonic oscillator and obtain its eigen values and eigen...
Solve schroedinger's equation for a three dimensional harmonic oscillator and obtain its eigen values and eigen functions.Are the energy levels degenerate? Explain what is the minimum uncertainty in its location in the lowest state.
Find an orthogonal matrix P that diagonalizes the following matrix A: A is 3 by 3...
Find an orthogonal matrix P that diagonalizes the following matrix A: A is 3 by 3 matrix: (3 1 0 1 -1 1 0 0 2)
Find a basis for R4 that contains the vectors X = (1, 2, 0, 3)⊤ and...
Find a basis for R4 that contains the vectors X = (1, 2, 0, 3)⊤ and ⊤ Y =(1,−3,5,10)T.
PCA uses the fact that the correlation matrix is real and symmetric. Are the corresponding eigen...
PCA uses the fact that the correlation matrix is real and symmetric. Are the corresponding eigen values real and distinct? How do you prove that assertion?
Show how Rotation Matrix R transforms vectors to vectors
Show how Rotation Matrix R transforms vectors to vectors
Find the inverse of the matrix [ 1 1 4 ] [ 3 2 4 ]...
Find the inverse of the matrix [ 1 1 4 ] [ 3 2 4 ] [ 1 1 6 ] It is a 3*3 matrix
Find a matrix P that diagonalizes the matrix A = [ 2 0 ?2 / 0...
Find a matrix P that diagonalizes the matrix A = [ 2 0 ?2 / 0 3 0 / 0 0 3 ] and compute P ?1AP.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT